milvus/internal/core/unittest/test_expr.cpp

1564 lines
55 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <boost/format.hpp>
#include <gtest/gtest.h>
#include <regex>
#include "query/Expr.h"
#include "query/Plan.h"
#include "query/PlanNode.h"
#include "query/generated/ShowPlanNodeVisitor.h"
#include "query/generated/ExecExprVisitor.h"
#include "segcore/SegmentGrowingImpl.h"
#include "test_utils/DataGen.h"
#include "index/IndexFactory.h"
using namespace milvus;
TEST(Expr, Naive) {
SUCCEED();
std::string dsl_string = R"(
{
"bool": {
"must": [
{
"term": {
"A": [
1,
2,
5
]
}
},
{
"range": {
"B": {
"GT": 1,
"LT": 100
}
}
},
{
"vector": {
"Vec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10
}
}
}
]
}
})";
}
TEST(Expr, Range) {
SUCCEED();
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
std::string dsl_string = R"({
"bool": {
"must": [
{
"range": {
"age": {
"GT": 1,
"LT": 100
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
schema->AddDebugField("age", DataType::INT32);
auto plan = CreatePlan(*schema, dsl_string);
ShowPlanNodeVisitor shower;
Assert(plan->tag2field_.at("$0") ==
schema->get_field_id(FieldName("fakevec")));
auto out = shower.call_child(*plan->plan_node_);
std::cout << out.dump(4);
}
TEST(Expr, RangeBinary) {
SUCCEED();
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
std::string dsl_string = R"({
"bool": {
"must": [
{
"range": {
"age": {
"GT": 1,
"LT": 100
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "Jaccard",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_BINARY, 512, knowhere::metric::JACCARD);
schema->AddDebugField("age", DataType::INT32);
auto plan = CreatePlan(*schema, dsl_string);
ShowPlanNodeVisitor shower;
Assert(plan->tag2field_.at("$0") ==
schema->get_field_id(FieldName("fakevec")));
auto out = shower.call_child(*plan->plan_node_);
std::cout << out.dump(4);
}
TEST(Expr, InvalidRange) {
SUCCEED();
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
std::string dsl_string = R"(
{
"bool": {
"must": [
{
"range": {
"age": {
"GT": 1,
"LT": "100"
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
schema->AddDebugField("age", DataType::INT32);
ASSERT_ANY_THROW(CreatePlan(*schema, dsl_string));
}
TEST(Expr, InvalidDSL) {
SUCCEED();
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
std::string dsl_string = R"({
"float": {
"must": [
{
"range": {
"age": {
"GT": 1,
"LT": 100
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
schema->AddDebugField("age", DataType::INT32);
ASSERT_ANY_THROW(CreatePlan(*schema, dsl_string));
}
TEST(Expr, ShowExecutor) {
using namespace milvus::query;
using namespace milvus::segcore;
auto node = std::make_unique<FloatVectorANNS>();
auto schema = std::make_shared<Schema>();
auto metric_type = knowhere::metric::L2;
auto field_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, metric_type);
int64_t num_queries = 100L;
auto raw_data = DataGen(schema, num_queries);
auto& info = node->search_info_;
info.metric_type_ = metric_type;
info.topk_ = 20;
info.field_id_ = field_id;
node->predicate_ = std::nullopt;
ShowPlanNodeVisitor show_visitor;
PlanNodePtr base(node.release());
auto res = show_visitor.call_child(*base);
auto dup = res;
dup["data"] = "...collased...";
std::cout << dup.dump(4);
}
TEST(Expr, TestRange) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<std::tuple<std::string, std::function<bool(int)>>> testcases = {
{R"("GT": 2000, "LT": 3000)",
[](int v) { return 2000 < v && v < 3000; }},
{R"("GE": 2000, "LT": 3000)",
[](int v) { return 2000 <= v && v < 3000; }},
{R"("GT": 2000, "LE": 3000)",
[](int v) { return 2000 < v && v <= 3000; }},
{R"("GE": 2000, "LE": 3000)",
[](int v) { return 2000 <= v && v <= 3000; }},
{R"("GE": 2000)", [](int v) { return v >= 2000; }},
{R"("GT": 2000)", [](int v) { return v > 2000; }},
{R"("LE": 2000)", [](int v) { return v <= 2000; }},
{R"("LT": 2000)", [](int v) { return v < 2000; }},
{R"("EQ": 2000)", [](int v) { return v == 2000; }},
{R"("NE": 2000)", [](int v) { return v != 2000; }},
};
std::string dsl_string_tmp = R"({
"bool": {
"must": [
{
"range": {
"age": {
@@@@
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i64_fid = schema->AddDebugField("age", DataType::INT64);
schema->set_primary_field_id(i64_fid);
auto seg = CreateGrowingSegment(schema);
int N = 1000;
std::vector<int> age_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_age_col = raw_data.get_col<int>(i64_fid);
age_col.insert(age_col.end(), new_age_col.begin(), new_age_col.end());
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
ExecExprVisitor visitor(
*seg_promote, seg_promote->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func] : testcases) {
auto loc = dsl_string_tmp.find("@@@@");
auto dsl_string = dsl_string_tmp;
dsl_string.replace(loc, 4, clause);
auto plan = CreatePlan(*schema, dsl_string);
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val = age_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
}
}
}
TEST(Expr, TestTerm) {
using namespace milvus::query;
using namespace milvus::segcore;
auto vec_2k_3k = [] {
std::string buf = "[";
for (int i = 2000; i < 3000 - 1; ++i) {
buf += std::to_string(i) + ", ";
}
buf += std::to_string(2999) + "]";
return buf;
}();
std::vector<std::tuple<std::string, std::function<bool(int)>>> testcases = {
{R"([2000, 3000])", [](int v) { return v == 2000 || v == 3000; }},
{R"([2000])", [](int v) { return v == 2000; }},
{R"([3000])", [](int v) { return v == 3000; }},
{R"([])", [](int v) { return false; }},
{vec_2k_3k, [](int v) { return 2000 <= v && v < 3000; }},
};
std::string dsl_string_tmp = R"({
"bool": {
"must": [
{
"term": {
"age": {
"values": @@@@
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i64_fid = schema->AddDebugField("age", DataType::INT64);
schema->set_primary_field_id(i64_fid);
auto seg = CreateGrowingSegment(schema);
int N = 1000;
std::vector<int> age_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_age_col = raw_data.get_col<int>(i64_fid);
age_col.insert(age_col.end(), new_age_col.begin(), new_age_col.end());
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
ExecExprVisitor visitor(
*seg_promote, seg_promote->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func] : testcases) {
auto loc = dsl_string_tmp.find("@@@@");
auto dsl_string = dsl_string_tmp;
dsl_string.replace(loc, 4, clause);
auto plan = CreatePlan(*schema, dsl_string);
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val = age_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
}
}
}
TEST(Expr, TestSimpleDsl) {
using namespace milvus::query;
using namespace milvus::segcore;
auto vec_dsl = Json::parse(R"({
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
})");
int N = 32;
auto get_item = [&](int base, int bit = 1) {
std::vector<int> terms;
// note: random gen range is [0, 2N)
for (int i = 0; i < N * 2; ++i) {
if (((i >> base) & 0x1) == bit) {
terms.push_back(i);
}
}
Json s;
s["term"]["age"]["values"] = terms;
return s;
};
// std::cout << get_item(0).dump(-2);
// std::cout << vec_dsl.dump(-2);
std::vector<std::tuple<Json, std::function<bool(int)>>> testcases;
{
Json dsl;
dsl["must"] = Json::array(
{vec_dsl, get_item(0), get_item(1), get_item(2, 0), get_item(3)});
testcases.emplace_back(
dsl, [](int64_t x) { return (x & 0b1111) == 0b1011; });
}
{
Json dsl;
Json sub_dsl;
sub_dsl["must"] = Json::array(
{get_item(0), get_item(1), get_item(2, 0), get_item(3)});
dsl["must"] = Json::array({sub_dsl, vec_dsl});
testcases.emplace_back(
dsl, [](int64_t x) { return (x & 0b1111) == 0b1011; });
}
{
Json dsl;
Json sub_dsl;
sub_dsl["should"] = Json::array(
{get_item(0), get_item(1), get_item(2, 0), get_item(3)});
dsl["must"] = Json::array({sub_dsl, vec_dsl});
testcases.emplace_back(
dsl, [](int64_t x) { return !!((x & 0b1111) ^ 0b0100); });
}
{
Json dsl;
Json sub_dsl;
sub_dsl["must_not"] = Json::array(
{get_item(0), get_item(1), get_item(2, 0), get_item(3)});
dsl["must"] = Json::array({sub_dsl, vec_dsl});
testcases.emplace_back(
dsl, [](int64_t x) { return (x & 0b1111) != 0b1011; });
}
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i64_fid = schema->AddDebugField("age", DataType::INT64);
schema->set_primary_field_id(i64_fid);
auto seg = CreateGrowingSegment(schema);
std::vector<int64_t> age_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_age_col = raw_data.get_col<int64_t>(i64_fid);
age_col.insert(age_col.end(), new_age_col.begin(), new_age_col.end());
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
ExecExprVisitor visitor(
*seg_promote, seg_promote->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func] : testcases) {
Json dsl;
dsl["bool"] = clause;
// std::cout << dsl.dump(2);
auto plan = CreatePlan(*schema, dsl.dump());
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
bool ans = final[i];
auto val = age_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
}
}
}
TEST(Expr, TestCompare) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<std::tuple<std::string, std::function<bool(int, int64_t)>>>
testcases = {
{R"("LT")", [](int a, int64_t b) { return a < b; }},
{R"("LE")", [](int a, int64_t b) { return a <= b; }},
{R"("GT")", [](int a, int64_t b) { return a > b; }},
{R"("GE")", [](int a, int64_t b) { return a >= b; }},
{R"("EQ")", [](int a, int64_t b) { return a == b; }},
{R"("NE")", [](int a, int64_t b) { return a != b; }},
};
std::string dsl_string_tpl = R"({
"bool": {
"must": [
{
"compare": {
%1%: [
"age1",
"age2"
]
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i32_fid = schema->AddDebugField("age1", DataType::INT32);
auto i64_fid = schema->AddDebugField("age2", DataType::INT64);
schema->set_primary_field_id(i64_fid);
auto seg = CreateGrowingSegment(schema);
int N = 1000;
std::vector<int> age1_col;
std::vector<int64_t> age2_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_age1_col = raw_data.get_col<int>(i32_fid);
auto new_age2_col = raw_data.get_col<int64_t>(i64_fid);
age1_col.insert(
age1_col.end(), new_age1_col.begin(), new_age1_col.end());
age2_col.insert(
age2_col.end(), new_age2_col.begin(), new_age2_col.end());
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
ExecExprVisitor visitor(
*seg_promote, seg_promote->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func] : testcases) {
auto dsl_string = boost::str(boost::format(dsl_string_tpl) % clause);
auto plan = CreatePlan(*schema, dsl_string);
// std::cout << ShowPlanNodeVisitor().call_child(*plan->plan_node_) << std::endl;
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val1 = age1_col[i];
auto val2 = age2_col[i];
auto ref = ref_func(val1, val2);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!"
<< boost::format("[%1%, %2%]") % val1 % val2;
}
}
}
TEST(Expr, TestCompareWithScalarIndex) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<std::tuple<std::string, std::function<bool(int, int64_t)>>>
testcases = {
{R"(LessThan)", [](int a, int64_t b) { return a < b; }},
{R"(LessEqual)", [](int a, int64_t b) { return a <= b; }},
{R"(GreaterThan)", [](int a, int64_t b) { return a > b; }},
{R"(GreaterEqual)", [](int a, int64_t b) { return a >= b; }},
{R"(Equal)", [](int a, int64_t b) { return a == b; }},
{R"(NotEqual)", [](int a, int64_t b) { return a != b; }},
};
std::string serialized_expr_plan = R"(vector_anns: <
field_id: %1%
predicates: <
compare_expr: <
left_column_info: <
field_id: %3%
data_type: %4%
>
right_column_info: <
field_id: %5%
data_type: %6%
>
op: %2%
>
>
query_info: <
topk: 10
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i32_fid = schema->AddDebugField("age32", DataType::INT32);
auto i64_fid = schema->AddDebugField("age64", DataType::INT64);
schema->set_primary_field_id(i64_fid);
auto seg = CreateSealedSegment(schema);
int N = 1000;
auto raw_data = DataGen(schema, N);
segcore::LoadIndexInfo load_index_info;
// load index for int32 field
auto age32_col = raw_data.get_col<int32_t>(i32_fid);
age32_col[0] = 1000;
GenScalarIndexing(N, age32_col.data());
auto age32_index = milvus::index::CreateScalarIndexSort<int32_t>();
age32_index->Build(N, age32_col.data());
load_index_info.field_id = i32_fid.get();
load_index_info.field_type = DataType::INT32;
load_index_info.index = std::move(age32_index);
seg->LoadIndex(load_index_info);
// load index for int64 field
auto age64_col = raw_data.get_col<int64_t>(i64_fid);
age64_col[0] = 2000;
GenScalarIndexing(N, age64_col.data());
auto age64_index = milvus::index::CreateScalarIndexSort<int64_t>();
age64_index->Build(N, age64_col.data());
load_index_info.field_id = i64_fid.get();
load_index_info.field_type = DataType::INT64;
load_index_info.index = std::move(age64_index);
seg->LoadIndex(load_index_info);
ExecExprVisitor visitor(*seg, seg->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func] : testcases) {
auto dsl_string =
boost::format(serialized_expr_plan) % vec_fid.get() % clause %
i32_fid.get() % proto::schema::DataType_Name(int(DataType::INT32)) %
i64_fid.get() % proto::schema::DataType_Name(int(DataType::INT64));
auto binary_plan =
translate_text_plan_to_binary_plan(dsl_string.str().data());
auto plan = CreateSearchPlanByExpr(
*schema, binary_plan.data(), binary_plan.size());
// std::cout << ShowPlanNodeVisitor().call_child(*plan->plan_node_) << std::endl;
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N);
for (int i = 0; i < N; ++i) {
auto ans = final[i];
auto val1 = age32_col[i];
auto val2 = age64_col[i];
auto ref = ref_func(val1, val2);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!"
<< boost::format("[%1%, %2%]") % val1 % val2;
}
}
}
TEST(Expr, TestCompareWithScalarIndexMaris) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<
std::tuple<std::string, std::function<bool(std::string, std::string)>>>
testcases = {
{R"(LessThan)",
[](std::string a, std::string b) { return a.compare(b) < 0; }},
{R"(LessEqual)",
[](std::string a, std::string b) { return a.compare(b) <= 0; }},
{R"(GreaterThan)",
[](std::string a, std::string b) { return a.compare(b) > 0; }},
{R"(GreaterEqual)",
[](std::string a, std::string b) { return a.compare(b) >= 0; }},
{R"(Equal)",
[](std::string a, std::string b) { return a.compare(b) == 0; }},
{R"(NotEqual)",
[](std::string a, std::string b) { return a.compare(b) != 0; }},
};
const char* serialized_expr_plan = R"(vector_anns: <
field_id: %1%
predicates: <
compare_expr: <
left_column_info: <
field_id: %3%
data_type: VarChar
>
right_column_info: <
field_id: %4%
data_type: VarChar
>
op: %2%
>
>
query_info: <
topk: 10
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR);
auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR);
schema->set_primary_field_id(str1_fid);
auto seg = CreateSealedSegment(schema);
int N = 1000;
auto raw_data = DataGen(schema, N);
segcore::LoadIndexInfo load_index_info;
// load index for int32 field
auto str1_col = raw_data.get_col<std::string>(str1_fid);
GenScalarIndexing(N, str1_col.data());
auto str1_index = milvus::index::CreateScalarIndexSort<std::string>();
str1_index->Build(N, str1_col.data());
load_index_info.field_id = str1_fid.get();
load_index_info.field_type = DataType::VARCHAR;
load_index_info.index = std::move(str1_index);
seg->LoadIndex(load_index_info);
// load index for int64 field
auto str2_col = raw_data.get_col<std::string>(str2_fid);
GenScalarIndexing(N, str2_col.data());
auto str2_index = milvus::index::CreateScalarIndexSort<std::string>();
str2_index->Build(N, str2_col.data());
load_index_info.field_id = str2_fid.get();
load_index_info.field_type = DataType::VARCHAR;
load_index_info.index = std::move(str2_index);
seg->LoadIndex(load_index_info);
ExecExprVisitor visitor(*seg, seg->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func] : testcases) {
auto dsl_string = boost::format(serialized_expr_plan) % vec_fid.get() %
clause % str1_fid.get() % str2_fid.get();
auto binary_plan =
translate_text_plan_to_binary_plan(dsl_string.str().data());
auto plan = CreateSearchPlanByExpr(
*schema, binary_plan.data(), binary_plan.size());
// std::cout << ShowPlanNodeVisitor().call_child(*plan->plan_node_) << std::endl;
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N);
for (int i = 0; i < N; ++i) {
auto ans = final[i];
auto val1 = str1_col[i];
auto val2 = str2_col[i];
auto ref = ref_func(val1, val2);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!"
<< boost::format("[%1%, %2%]") % val1 % val2;
}
}
}
TEST(Expr, TestBinaryArithOpEvalRange) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<std::tuple<std::string, std::function<bool(int)>, DataType>>
testcases = {
// Add test cases for BinaryArithOpEvalRangeExpr EQ of various data types
{R"("EQ": {
"ADD": {
"right_operand": 4,
"value": 8
}
})",
[](int8_t v) { return (v + 4) == 8; },
DataType::INT8},
{R"("EQ": {
"SUB": {
"right_operand": 500,
"value": 1500
}
})",
[](int16_t v) { return (v - 500) == 1500; },
DataType::INT16},
{R"("EQ": {
"MUL": {
"right_operand": 2,
"value": 4000
}
})",
[](int32_t v) { return (v * 2) == 4000; },
DataType::INT32},
{R"("EQ": {
"DIV": {
"right_operand": 2,
"value": 1000
}
})",
[](int64_t v) { return (v / 2) == 1000; },
DataType::INT64},
{R"("EQ": {
"MOD": {
"right_operand": 100,
"value": 0
}
})",
[](int32_t v) { return (v % 100) == 0; },
DataType::INT32},
{R"("EQ": {
"ADD": {
"right_operand": 500,
"value": 2500
}
})",
[](float v) { return (v + 500) == 2500; },
DataType::FLOAT},
{R"("EQ": {
"ADD": {
"right_operand": 500,
"value": 2500
}
})",
[](double v) { return (v + 500) == 2500; },
DataType::DOUBLE},
// Add test cases for BinaryArithOpEvalRangeExpr NE of various data types
{R"("NE": {
"ADD": {
"right_operand": 500,
"value": 2500
}
})",
[](float v) { return (v + 500) != 2500; },
DataType::FLOAT},
{R"("NE": {
"SUB": {
"right_operand": 500,
"value": 2500
}
})",
[](double v) { return (v - 500) != 2500; },
DataType::DOUBLE},
{R"("NE": {
"MUL": {
"right_operand": 2,
"value": 2
}
})",
[](int8_t v) { return (v * 2) != 2; },
DataType::INT8},
{R"("NE": {
"DIV": {
"right_operand": 2,
"value": 1000
}
})",
[](int16_t v) { return (v / 2) != 1000; },
DataType::INT16},
{R"("NE": {
"MOD": {
"right_operand": 100,
"value": 0
}
})",
[](int32_t v) { return (v % 100) != 0; },
DataType::INT32},
{R"("NE": {
"ADD": {
"right_operand": 500,
"value": 2500
}
})",
[](int64_t v) { return (v + 500) != 2500; },
DataType::INT64},
};
std::string dsl_string_tmp = R"({
"bool": {
"must": [
{
"range": {
@@@@@
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
std::string dsl_string_int8 = R"(
"age8": {
@@@@
})";
std::string dsl_string_int16 = R"(
"age16": {
@@@@
})";
std::string dsl_string_int32 = R"(
"age32": {
@@@@
})";
std::string dsl_string_int64 = R"(
"age64": {
@@@@
})";
std::string dsl_string_float = R"(
"age_float": {
@@@@
})";
std::string dsl_string_double = R"(
"age_double": {
@@@@
})";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i8_fid = schema->AddDebugField("age8", DataType::INT8);
auto i16_fid = schema->AddDebugField("age16", DataType::INT16);
auto i32_fid = schema->AddDebugField("age32", DataType::INT32);
auto i64_fid = schema->AddDebugField("age64", DataType::INT64);
auto float_fid = schema->AddDebugField("age_float", DataType::FLOAT);
auto double_fid = schema->AddDebugField("age_double", DataType::DOUBLE);
schema->set_primary_field_id(i64_fid);
auto seg = CreateGrowingSegment(schema);
int N = 1000;
std::vector<int8_t> age8_col;
std::vector<int16_t> age16_col;
std::vector<int32_t> age32_col;
std::vector<int64_t> age64_col;
std::vector<float> age_float_col;
std::vector<double> age_double_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_age8_col = raw_data.get_col<int8_t>(i8_fid);
auto new_age16_col = raw_data.get_col<int16_t>(i16_fid);
auto new_age32_col = raw_data.get_col<int32_t>(i32_fid);
auto new_age64_col = raw_data.get_col<int64_t>(i64_fid);
auto new_age_float_col = raw_data.get_col<float>(float_fid);
auto new_age_double_col = raw_data.get_col<double>(double_fid);
age8_col.insert(
age8_col.end(), new_age8_col.begin(), new_age8_col.end());
age16_col.insert(
age16_col.end(), new_age16_col.begin(), new_age16_col.end());
age32_col.insert(
age32_col.end(), new_age32_col.begin(), new_age32_col.end());
age64_col.insert(
age64_col.end(), new_age64_col.begin(), new_age64_col.end());
age_float_col.insert(age_float_col.end(),
new_age_float_col.begin(),
new_age_float_col.end());
age_double_col.insert(age_double_col.end(),
new_age_double_col.begin(),
new_age_double_col.end());
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
ExecExprVisitor visitor(
*seg_promote, seg_promote->get_row_count(), MAX_TIMESTAMP);
for (auto [clause, ref_func, dtype] : testcases) {
auto loc = dsl_string_tmp.find("@@@@@");
auto dsl_string = dsl_string_tmp;
if (dtype == DataType::INT8) {
dsl_string.replace(loc, 5, dsl_string_int8);
} else if (dtype == DataType::INT16) {
dsl_string.replace(loc, 5, dsl_string_int16);
} else if (dtype == DataType::INT32) {
dsl_string.replace(loc, 5, dsl_string_int32);
} else if (dtype == DataType::INT64) {
dsl_string.replace(loc, 5, dsl_string_int64);
} else if (dtype == DataType::FLOAT) {
dsl_string.replace(loc, 5, dsl_string_float);
} else if (dtype == DataType::DOUBLE) {
dsl_string.replace(loc, 5, dsl_string_double);
} else {
ASSERT_TRUE(false) << "No test case defined for this data type";
}
loc = dsl_string.find("@@@@");
dsl_string.replace(loc, 4, clause);
auto plan = CreatePlan(*schema, dsl_string);
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
if (dtype == DataType::INT8) {
auto val = age8_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::INT16) {
auto val = age16_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::INT32) {
auto val = age32_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::INT64) {
auto val = age64_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::FLOAT) {
auto val = age_float_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::DOUBLE) {
auto val = age_double_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else {
ASSERT_TRUE(false) << "No test case defined for this data type";
}
}
}
}
TEST(Expr, TestBinaryArithOpEvalRangeExceptions) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<std::tuple<std::string, std::string, DataType>> testcases = {
// Add test for data type mismatch
{R"("EQ": {
"ADD": {
"right_operand": 500,
"value": 2500.00
}
})",
"Assert \"(value.is_number_integer())\"",
DataType::INT32},
{R"("EQ": {
"ADD": {
"right_operand": 500.0,
"value": 2500
}
})",
"Assert \"(right_operand.is_number_integer())\"",
DataType::INT32},
{R"("EQ": {
"ADD": {
"right_operand": 500.0,
"value": true
}
})",
"Assert \"(value.is_number())\"",
DataType::FLOAT},
{R"("EQ": {
"ADD": {
"right_operand": "500",
"value": 2500.0
}
})",
"Assert \"(right_operand.is_number())\"",
DataType::FLOAT},
// Check unsupported arithmetic operator type
{R"("EQ": {
"EXP": {
"right_operand": 500,
"value": 2500
}
})",
"arith op(exp) not found",
DataType::INT32},
// Check unsupported data type
{R"("EQ": {
"ADD": {
"right_operand": true,
"value": false
}
})",
"bool type is not supported",
DataType::BOOL},
};
std::string dsl_string_tmp = R"({
"bool": {
"must": [
{
"range": {
@@@@@
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 10,
"round_decimal": 3
}
}
}
]
}
})";
std::string dsl_string_int = R"(
"age": {
@@@@
})";
std::string dsl_string_num = R"(
"FloatN": {
@@@@
})";
std::string dsl_string_bool = R"(
"BoolField": {
@@@@
})";
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
schema->AddDebugField("age", DataType::INT32);
schema->AddDebugField("FloatN", DataType::FLOAT);
schema->AddDebugField("BoolField", DataType::BOOL);
for (auto [clause, assert_info, dtype] : testcases) {
auto loc = dsl_string_tmp.find("@@@@@");
auto dsl_string = dsl_string_tmp;
if (dtype == DataType::INT32) {
dsl_string.replace(loc, 5, dsl_string_int);
} else if (dtype == DataType::FLOAT) {
dsl_string.replace(loc, 5, dsl_string_num);
} else if (dtype == DataType::BOOL) {
dsl_string.replace(loc, 5, dsl_string_bool);
} else {
ASSERT_TRUE(false) << "No test case defined for this data type";
}
loc = dsl_string.find("@@@@");
dsl_string.replace(loc, 4, clause);
try {
auto plan = CreatePlan(*schema, dsl_string);
FAIL() << "Expected AssertionError: " << assert_info
<< " not thrown";
} catch (const std::exception& err) {
std::string err_msg = err.what();
ASSERT_TRUE(err_msg.find(assert_info) != std::string::npos);
} catch (...) {
FAIL() << "Expected AssertionError: " << assert_info
<< " not thrown";
}
}
}
TEST(Expr, TestBinaryArithOpEvalRangeWithScalarSortIndex) {
using namespace milvus::query;
using namespace milvus::segcore;
std::vector<std::tuple<std::string, std::function<bool(int)>, DataType>>
testcases = {
// Add test cases for BinaryArithOpEvalRangeExpr EQ of various data types
{R"(arith_op: Add
right_operand: <
int64_val: 4
>
op: Equal
value: <
int64_val: 8
>)",
[](int8_t v) { return (v + 4) == 8; },
DataType::INT8},
{R"(arith_op: Sub
right_operand: <
int64_val: 500
>
op: Equal
value: <
int64_val: 1500
>)",
[](int16_t v) { return (v - 500) == 1500; },
DataType::INT16},
{R"(arith_op: Mul
right_operand: <
int64_val: 2
>
op: Equal
value: <
int64_val: 4000
>)",
[](int32_t v) { return (v * 2) == 4000; },
DataType::INT32},
{R"(arith_op: Div
right_operand: <
int64_val: 2
>
op: Equal
value: <
int64_val: 1000
>)",
[](int64_t v) { return (v / 2) == 1000; },
DataType::INT64},
{R"(arith_op: Mod
right_operand: <
int64_val: 100
>
op: Equal
value: <
int64_val: 0
>)",
[](int32_t v) { return (v % 100) == 0; },
DataType::INT32},
{R"(arith_op: Add
right_operand: <
float_val: 500
>
op: Equal
value: <
float_val: 2500
>)",
[](float v) { return (v + 500) == 2500; },
DataType::FLOAT},
{R"(arith_op: Add
right_operand: <
float_val: 500
>
op: Equal
value: <
float_val: 2500
>)",
[](double v) { return (v + 500) == 2500; },
DataType::DOUBLE},
{R"(arith_op: Add
right_operand: <
float_val: 500
>
op: NotEqual
value: <
float_val: 2000
>)",
[](float v) { return (v + 500) != 2000; },
DataType::FLOAT},
{R"(arith_op: Sub
right_operand: <
float_val: 500
>
op: NotEqual
value: <
float_val: 2500
>)",
[](double v) { return (v - 500) != 2000; },
DataType::DOUBLE},
{R"(arith_op: Mul
right_operand: <
int64_val: 2
>
op: NotEqual
value: <
int64_val: 2
>)",
[](int8_t v) { return (v * 2) != 2; },
DataType::INT8},
{R"(arith_op: Div
right_operand: <
int64_val: 2
>
op: NotEqual
value: <
int64_val: 2000
>)",
[](int16_t v) { return (v / 2) != 2000; },
DataType::INT16},
{R"(arith_op: Mod
right_operand: <
int64_val: 100
>
op: NotEqual
value: <
int64_val: 1
>)",
[](int32_t v) { return (v % 100) != 1; },
DataType::INT32},
{R"(arith_op: Add
right_operand: <
int64_val: 500
>
op: NotEqual
value: <
int64_val: 2000
>)",
[](int64_t v) { return (v + 500) != 2000; },
DataType::INT64},
};
std::string serialized_expr_plan = R"(vector_anns: <
field_id: %1%
predicates: <
binary_arith_op_eval_range_expr: <
@@@@@
>
>
query_info: <
topk: 10
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
std::string arith_expr = R"(
column_info: <
field_id: %2%
data_type: %3%
>
@@@@)";
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto i8_fid = schema->AddDebugField("age8", DataType::INT8);
auto i16_fid = schema->AddDebugField("age16", DataType::INT16);
auto i32_fid = schema->AddDebugField("age32", DataType::INT32);
auto i64_fid = schema->AddDebugField("age64", DataType::INT64);
auto float_fid = schema->AddDebugField("age_float", DataType::FLOAT);
auto double_fid = schema->AddDebugField("age_double", DataType::DOUBLE);
schema->set_primary_field_id(i64_fid);
auto seg = CreateSealedSegment(schema);
int N = 1000;
auto raw_data = DataGen(schema, N);
segcore::LoadIndexInfo load_index_info;
// load index for int8 field
auto age8_col = raw_data.get_col<int8_t>(i8_fid);
age8_col[0] = 4;
GenScalarIndexing(N, age8_col.data());
auto age8_index = milvus::index::CreateScalarIndexSort<int8_t>();
age8_index->Build(N, age8_col.data());
load_index_info.field_id = i8_fid.get();
load_index_info.field_type = DataType::INT8;
load_index_info.index = std::move(age8_index);
seg->LoadIndex(load_index_info);
// load index for 16 field
auto age16_col = raw_data.get_col<int16_t>(i16_fid);
age16_col[0] = 2000;
GenScalarIndexing(N, age16_col.data());
auto age16_index = milvus::index::CreateScalarIndexSort<int16_t>();
age16_index->Build(N, age16_col.data());
load_index_info.field_id = i16_fid.get();
load_index_info.field_type = DataType::INT16;
load_index_info.index = std::move(age16_index);
seg->LoadIndex(load_index_info);
// load index for int32 field
auto age32_col = raw_data.get_col<int32_t>(i32_fid);
age32_col[0] = 2000;
GenScalarIndexing(N, age32_col.data());
auto age32_index = milvus::index::CreateScalarIndexSort<int32_t>();
age32_index->Build(N, age32_col.data());
load_index_info.field_id = i32_fid.get();
load_index_info.field_type = DataType::INT32;
load_index_info.index = std::move(age32_index);
seg->LoadIndex(load_index_info);
// load index for int64 field
auto age64_col = raw_data.get_col<int64_t>(i64_fid);
age64_col[0] = 2000;
GenScalarIndexing(N, age64_col.data());
auto age64_index = milvus::index::CreateScalarIndexSort<int64_t>();
age64_index->Build(N, age64_col.data());
load_index_info.field_id = i64_fid.get();
load_index_info.field_type = DataType::INT64;
load_index_info.index = std::move(age64_index);
seg->LoadIndex(load_index_info);
// load index for float field
auto age_float_col = raw_data.get_col<float>(float_fid);
age_float_col[0] = 2000;
GenScalarIndexing(N, age_float_col.data());
auto age_float_index = milvus::index::CreateScalarIndexSort<float>();
age_float_index->Build(N, age_float_col.data());
load_index_info.field_id = float_fid.get();
load_index_info.field_type = DataType::FLOAT;
load_index_info.index = std::move(age_float_index);
seg->LoadIndex(load_index_info);
// load index for double field
auto age_double_col = raw_data.get_col<double>(double_fid);
age_double_col[0] = 2000;
GenScalarIndexing(N, age_double_col.data());
auto age_double_index = milvus::index::CreateScalarIndexSort<double>();
age_double_index->Build(N, age_double_col.data());
load_index_info.field_id = double_fid.get();
load_index_info.field_type = DataType::FLOAT;
load_index_info.index = std::move(age_double_index);
seg->LoadIndex(load_index_info);
auto seg_promote = dynamic_cast<SegmentSealedImpl*>(seg.get());
ExecExprVisitor visitor(
*seg_promote, seg_promote->get_row_count(), MAX_TIMESTAMP);
int offset = 0;
for (auto [clause, ref_func, dtype] : testcases) {
auto loc = serialized_expr_plan.find("@@@@@");
auto expr_plan = serialized_expr_plan;
expr_plan.replace(loc, 5, arith_expr);
loc = expr_plan.find("@@@@");
expr_plan.replace(loc, 4, clause);
boost::format expr;
if (dtype == DataType::INT8) {
expr = boost::format(expr_plan) % vec_fid.get() % i8_fid.get() %
proto::schema::DataType_Name(int(DataType::INT8));
} else if (dtype == DataType::INT16) {
expr = boost::format(expr_plan) % vec_fid.get() % i16_fid.get() %
proto::schema::DataType_Name(int(DataType::INT16));
} else if (dtype == DataType::INT32) {
expr = boost::format(expr_plan) % vec_fid.get() % i32_fid.get() %
proto::schema::DataType_Name(int(DataType::INT32));
} else if (dtype == DataType::INT64) {
expr = boost::format(expr_plan) % vec_fid.get() % i64_fid.get() %
proto::schema::DataType_Name(int(DataType::INT64));
} else if (dtype == DataType::FLOAT) {
expr = boost::format(expr_plan) % vec_fid.get() % float_fid.get() %
proto::schema::DataType_Name(int(DataType::FLOAT));
} else if (dtype == DataType::DOUBLE) {
expr = boost::format(expr_plan) % vec_fid.get() % double_fid.get() %
proto::schema::DataType_Name(int(DataType::DOUBLE));
} else {
ASSERT_TRUE(false) << "No test case defined for this data type";
}
auto binary_plan =
translate_text_plan_to_binary_plan(expr.str().data());
auto plan = CreateSearchPlanByExpr(
*schema, binary_plan.data(), binary_plan.size());
auto final = visitor.call_child(*plan->plan_node_->predicate_.value());
EXPECT_EQ(final.size(), N);
for (int i = 0; i < N; ++i) {
auto ans = final[i];
if (dtype == DataType::INT8) {
auto val = age8_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::INT16) {
auto val = age16_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::INT32) {
auto val = age32_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::INT64) {
auto val = age64_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::FLOAT) {
auto val = age_float_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else if (dtype == DataType::DOUBLE) {
auto val = age_double_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val;
} else {
ASSERT_TRUE(false) << "No test case defined for this data type";
}
}
}
}