milvus/internal/core/unittest/data/print_dsl.py

65 lines
1.9 KiB
Python
Executable File

#!python
import random
import copy
def show_dsl(query_entities):
if not isinstance(query_entities, (dict,)):
raise ParamError("Invalid query format. 'query_entities' must be a dict")
duplicated_entities = copy.deepcopy(query_entities)
vector_placeholders = dict()
def extract_vectors_param(param, placeholders):
if not isinstance(param, (dict, list)):
return
if isinstance(param, dict):
if "vector" in param:
# TODO: Here may not replace ph
ph = "$" + str(len(placeholders))
for pk, pv in param["vector"].items():
if "query" not in pv:
raise ParamError("param vector must contain 'query'")
placeholders[ph] = pv["query"]
param["vector"][pk]["query"] = ph
return
else:
for _, v in param.items():
extract_vectors_param(v, placeholders)
if isinstance(param, list):
for item in param:
extract_vectors_param(item, placeholders)
extract_vectors_param(duplicated_entities, vector_placeholders)
print(duplicated_entities)
for tag, vectors in vector_placeholders.items():
print("tag: ", tag)
if __name__ == "__main__":
num = 5
dimension = 4
vectors = [[random.random() for _ in range(4)] for _ in range(num)]
dsl = {
"bool": {
"must":[
{
"term": {"A": [1, 2, 5]}
},
{
"range": {"B": {"GT": 1, "LT": 100}}
},
{
"vector": {
"Vec": {"topk": 10, "query": vectors[:1], "metric_type": "L2", "params": {"nprobe": 10}}
}
}
]
}
}
show_dsl(dsl)