A cloud-native vector database, storage for next generation AI applications
 
 
 
 
 
 
Go to file
peng.xu cba3b111c5 Merge branch 'branch-0.4.0' into 'branch-0.4.0'
fix unittest crash

See merge request megasearch/milvus!437

Former-commit-id: ff5316210df033acdb1cc8d38b024e42985c7eb6
2019-08-26 19:26:42 +08:00
ci fix bug 2019-08-24 18:13:30 +08:00
cpp fix unittest crash 2019-08-26 19:25:50 +08:00
docs
install
pyengine
python
.dockerignore
.gitignore add knowhere 2019-08-08 16:32:17 +08:00
CHANGELOGS.md MS-345 Add Node Test 2019-08-13 16:45:39 +08:00
CONTRIBUTING.md
Dockerfile
INSTALL.md
LICENSE.md
README.md
environment.yaml
requirements.txt

README.md

Vecwise Engine Dev Guide

Install via Conda

  1. Install Miniconda first

    • bash vecwise_engine/install/miniconda.sh
  2. Create environment

    • conda env create -f vecwise_engine/environment.yaml
  3. Test your installation

Install via Docker

  1. Install nvidia-docker

  2. docker build -t cuda9.0/VecEngine .

  3. docker run -it cuda9.0/VecEngine bash

Create Database

  1. Install MySQL

    • sudo apt-get update
    • sudo apt-get install mariadb-server
  2. Create user and database:

    • create user vecwise;
    • create database vecdata;
    • grant all privileges on vecdata.* to 'vecwise'@'%';
    • flush privileges;
  3. Create table:

    • cd vecwise_engine/pyengine && python manager.py create_all