milvus/tests/python_client/base/client_base.py

265 lines
13 KiB
Python

from numpy.core.fromnumeric import _partition_dispatcher
import pytest
import sys
from pymilvus import DefaultConfig
sys.path.append("..")
from base.connections_wrapper import ApiConnectionsWrapper
from base.collection_wrapper import ApiCollectionWrapper
from base.partition_wrapper import ApiPartitionWrapper
from base.index_wrapper import ApiIndexWrapper
from base.utility_wrapper import ApiUtilityWrapper
from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrapper
from utils.util_log import test_log as log
from common import common_func as cf
from common import common_type as ct
class Base:
""" Initialize class object """
connection_wrap = None
collection_wrap = None
partition_wrap = None
index_wrap = None
utility_wrap = None
collection_schema_wrap = None
field_schema_wrap = None
collection_object_list = []
def setup_class(self):
log.info("[setup_class] Start setup class...")
def teardown_class(self):
log.info("[teardown_class] Start teardown class...")
def setup_method(self, method):
log.info(("*" * 35) + " setup " + ("*" * 35))
log.info("[setup_method] Start setup test case %s." % method.__name__)
self.connection_wrap = ApiConnectionsWrapper()
self.utility_wrap = ApiUtilityWrapper()
self.collection_wrap = ApiCollectionWrapper()
self.partition_wrap = ApiPartitionWrapper()
self.index_wrap = ApiIndexWrapper()
self.collection_schema_wrap = ApiCollectionSchemaWrapper()
self.field_schema_wrap = ApiFieldSchemaWrapper()
def teardown_method(self, method):
log.info(("*" * 35) + " teardown " + ("*" * 35))
log.info("[teardown_method] Start teardown test case %s..." % method.__name__)
try:
""" Drop collection before disconnect """
if not self.connection_wrap.has_connection(alias=DefaultConfig.DEFAULT_USING)[0]:
self.connection_wrap.connect(alias=DefaultConfig.DEFAULT_USING, host=cf.param_info.param_host,
port=cf.param_info.param_port)
if self.collection_wrap.collection is not None:
if self.collection_wrap.collection.name.startswith("alias"):
log.info(f"collection {self.collection_wrap.collection.name} is alias, skip drop operation")
else:
self.collection_wrap.drop(check_task=ct.CheckTasks.check_nothing)
collection_list = self.utility_wrap.list_collections()[0]
for collection_object in self.collection_object_list:
if collection_object.collection is not None and collection_object.name in collection_list:
collection_object.drop(check_task=ct.CheckTasks.check_nothing)
except Exception as e:
log.debug(str(e))
try:
""" Delete connection and reset configuration"""
res = self.connection_wrap.list_connections()
for i in res[0]:
self.connection_wrap.remove_connection(i[0])
# because the connection is in singleton mode, it needs to be restored to the original state after teardown
self.connection_wrap.add_connection(default={"host": DefaultConfig.DEFAULT_HOST,
"port": DefaultConfig.DEFAULT_PORT})
except Exception as e:
log.debug(str(e))
class TestcaseBase(Base):
"""
Additional methods;
Public methods that can be used for test cases.
"""
def _connect(self):
""" Add a connection and create the connect """
if cf.param_info.param_user and cf.param_info.param_password:
res, is_succ = self.connection_wrap.connect(alias=DefaultConfig.DEFAULT_USING,
host=cf.param_info.param_host,
port=cf.param_info.param_port, user=cf.param_info.param_user,
password=cf.param_info.param_password,
secure=cf.param_info.param_secure)
else:
res, is_succ = self.connection_wrap.connect(alias=DefaultConfig.DEFAULT_USING,
host=cf.param_info.param_host,
port=cf.param_info.param_port)
return res
def init_collection_wrap(self, name=None, schema=None, shards_num=2, check_task=None, check_items=None, **kwargs):
name = cf.gen_unique_str('coll_') if name is None else name
schema = cf.gen_default_collection_schema() if schema is None else schema
if not self.connection_wrap.has_connection(alias=DefaultConfig.DEFAULT_USING)[0]:
self._connect()
collection_w = ApiCollectionWrapper()
collection_w.init_collection(name=name, schema=schema, shards_num=shards_num, check_task=check_task,
check_items=check_items, **kwargs)
self.collection_object_list.append(collection_w)
return collection_w
def init_multi_fields_collection_wrap(self, name=cf.gen_unique_str()):
vec_fields = [cf.gen_float_vec_field(ct.another_float_vec_field_name)]
schema = cf.gen_schema_multi_vector_fields(vec_fields)
collection_w = self.init_collection_wrap(name=name, schema=schema)
df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields)
collection_w.insert(df)
assert collection_w.num_entities == ct.default_nb
return collection_w, df
def init_partition_wrap(self, collection_wrap=None, name=None, description=None,
check_task=None, check_items=None, **kwargs):
name = cf.gen_unique_str("partition_") if name is None else name
description = cf.gen_unique_str("partition_des_") if description is None else description
collection_wrap = self.init_collection_wrap() if collection_wrap is None else collection_wrap
partition_wrap = ApiPartitionWrapper()
partition_wrap.init_partition(collection_wrap.collection, name, description,
check_task=check_task, check_items=check_items,
**kwargs)
return partition_wrap
def insert_data_general(self, prefix="test", insert_data=False, nb=ct.default_nb,
partition_num=0, is_binary=False, is_all_data_type=False,
auto_id=False, dim=ct.default_dim,
primary_field=ct.default_int64_field_name, is_flush=True, name=None, **kwargs):
"""
"""
self._connect()
collection_name = cf.gen_unique_str(prefix)
if name is not None:
collection_name = name
vectors = []
binary_raw_vectors = []
insert_ids = []
time_stamp = 0
# 1 create collection
default_schema = cf.gen_default_collection_schema(auto_id=auto_id, dim=dim, primary_field=primary_field)
if is_binary:
default_schema = cf.gen_default_binary_collection_schema(auto_id=auto_id, dim=dim,
primary_field=primary_field)
if is_all_data_type:
default_schema = cf.gen_collection_schema_all_datatype(auto_id=auto_id, dim=dim,
primary_field=primary_field)
log.info("init_collection_general: collection creation")
collection_w = self.init_collection_wrap(name=collection_name, schema=default_schema, **kwargs)
pre_entities = collection_w.num_entities
if insert_data:
collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp = \
cf.insert_data(collection_w, nb, is_binary, is_all_data_type, auto_id=auto_id, dim=dim)
if is_flush:
collection_w.flush()
assert collection_w.num_entities == nb + pre_entities
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
def init_collection_general(self, prefix="test", insert_data=False, nb=ct.default_nb,
partition_num=0, is_binary=False, is_all_data_type=False,
auto_id=False, dim=ct.default_dim, is_index=False,
primary_field=ct.default_int64_field_name, is_flush=True, name=None, **kwargs):
"""
target: create specified collections
method: 1. create collections (binary/non-binary, default/all data type, auto_id or not)
2. create partitions if specified
3. insert specified (binary/non-binary, default/all data type) data
into each partition if any
4. not load if specifying is_index as True
expected: return collection and raw data, insert ids
"""
log.info("Test case of search interface: initialize before test case")
self._connect()
collection_name = cf.gen_unique_str(prefix)
if name is not None:
collection_name = name
vectors = []
binary_raw_vectors = []
insert_ids = []
time_stamp = 0
# 1 create collection
default_schema = cf.gen_default_collection_schema(auto_id=auto_id, dim=dim, primary_field=primary_field)
if is_binary:
default_schema = cf.gen_default_binary_collection_schema(auto_id=auto_id, dim=dim,
primary_field=primary_field)
if is_all_data_type:
default_schema = cf.gen_collection_schema_all_datatype(auto_id=auto_id, dim=dim,
primary_field=primary_field)
log.info("init_collection_general: collection creation")
collection_w = self.init_collection_wrap(name=collection_name, schema=default_schema, **kwargs)
# 2 add extra partitions if specified (default is 1 partition named "_default")
if partition_num > 0:
cf.gen_partitions(collection_w, partition_num)
# 3 insert data if specified
if insert_data:
collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp = \
cf.insert_data(collection_w, nb, is_binary, is_all_data_type, auto_id=auto_id, dim=dim)
if is_flush:
assert collection_w.is_empty is False
assert collection_w.num_entities == nb
# This condition will be removed after auto index feature
if not is_index:
if is_binary:
collection_w.create_index(ct.default_binary_vec_field_name, ct.default_bin_flat_index)
else:
collection_w.create_index(ct.default_float_vec_field_name, ct.default_flat_index)
collection_w.load()
elif not is_index:
if is_binary:
collection_w.create_index(ct.default_binary_vec_field_name, ct.default_bin_flat_index)
else:
collection_w.create_index(ct.default_float_vec_field_name, ct.default_flat_index)
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
def insert_entities_into_two_partitions_in_half(self, half, prefix='query'):
"""
insert default entities into two partitions(partition_w and _default) in half(int64 and float fields values)
:param half: half of nb
:return: collection wrap and partition wrap
"""
self._connect()
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
# insert [0, half) into partition_w
df_partition = cf.gen_default_dataframe_data(nb=half, start=0)
partition_w.insert(df_partition)
# insert [half, nb) into _default
df_default = cf.gen_default_dataframe_data(nb=half, start=half)
collection_w.insert(df_default)
# flush
collection_w.num_entities
collection_w.create_index(ct.default_float_vec_field_name, index_params=ct.default_flat_index)
collection_w.load(partition_names=[partition_w.name, "_default"])
return collection_w, partition_w, df_partition, df_default
def collection_insert_multi_segments_one_shard(self, collection_prefix, num_of_segment=2, nb_of_segment=1,
is_dup=True):
"""
init collection with one shard, insert data into two segments on one shard (they can be merged)
:param collection_prefix: collection name prefix
:param num_of_segment: number of segments
:param nb_of_segment: number of entities per segment
:param is_dup: whether the primary keys of each segment is duplicated
:return: collection wrap and partition wrap
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(collection_prefix), shards_num=1)
for i in range(num_of_segment):
start = 0 if is_dup else i * nb_of_segment
df = cf.gen_default_dataframe_data(nb_of_segment, start=start)
collection_w.insert(df)
assert collection_w.num_entities == nb_of_segment * (i + 1)
return collection_w