milvus/internal/core/unittest/test_indexing.cpp

340 lines
10 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include <iostream>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include <faiss/utils/distances.h>
#include "segcore/ConcurrentVector.h"
#include "segcore/SegmentBase.h"
// #include "knowhere/index/vector_index/helpers/IndexParameter.h"
#include "segcore/SegmentBase.h"
#include "segcore/AckResponder.h"
#include <knowhere/index/vector_index/VecIndex.h>
#include <knowhere/index/vector_index/adapter/VectorAdapter.h>
#include <knowhere/index/vector_index/VecIndexFactory.h>
#include <knowhere/index/vector_index/IndexIVF.h>
#include <algorithm>
#include <chrono>
#include "test_utils/Timer.h"
#include "segcore/Reduce.h"
#include "test_utils/DataGen.h"
#include "query/BruteForceSearch.h"
using std::cin;
using std::cout;
using std::endl;
using namespace milvus::engine;
using namespace milvus::segcore;
using std::vector;
using namespace milvus;
namespace {
template <int DIM>
auto
generate_data(int N) {
std::vector<float> raw_data;
std::vector<uint64_t> timestamps;
std::vector<int64_t> uids;
std::default_random_engine er(42);
std::uniform_real_distribution<> distribution(0.0, 1.0);
std::default_random_engine ei(42);
for (int i = 0; i < N; ++i) {
uids.push_back(10 * N + i);
timestamps.push_back(0);
// append vec
vector<float> vec(DIM);
for (auto& x : vec) {
x = distribution(er);
}
raw_data.insert(raw_data.end(), std::begin(vec), std::end(vec));
}
return std::make_tuple(raw_data, timestamps, uids);
}
} // namespace
TEST(Indexing, SmartBruteForce) {
// how to ?
// I'd know
constexpr int N = 100000;
constexpr int DIM = 16;
constexpr int TOPK = 10;
auto bitmap = std::make_shared<faiss::ConcurrentBitset>(N);
// exclude the first
for (int i = 0; i < N / 2; ++i) {
bitmap->set(i);
}
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
auto total_count = DIM * TOPK;
auto raw = (const float*)raw_data.data();
AssertInfo(raw, "wtf");
constexpr int64_t queries = 3;
auto heap = faiss::float_maxheap_array_t{};
auto query_data = raw;
vector<int64_t> final_uids(total_count, -1);
vector<float> final_dis(total_count, std::numeric_limits<float>::max());
for (int beg = 0; beg < N; beg += DefaultElementPerChunk) {
vector<int64_t> buf_uids(total_count, -1);
vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
faiss::float_maxheap_array_t buf = {queries, TOPK, buf_uids.data(), buf_dis.data()};
auto end = beg + DefaultElementPerChunk;
if (end > N) {
end = N;
}
auto nsize = end - beg;
auto src_data = raw + beg * DIM;
faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr);
for (auto& x : buf_uids) {
x = uids[x + beg];
}
merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
}
for (int qn = 0; qn < queries; ++qn) {
for (int kn = 0; kn < TOPK; ++kn) {
auto index = qn * TOPK + kn;
cout << final_uids[index] << "->" << final_dis[index] << endl;
}
cout << endl;
}
}
TEST(Indexing, DISABLED_Naive) {
constexpr int N = 10000;
constexpr int DIM = 16;
constexpr int TOPK = 10;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
auto index = knowhere::VecIndexFactory::GetInstance().CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFPQ,
knowhere::IndexMode::MODE_CPU);
auto conf = milvus::knowhere::Config{
{knowhere::meta::DIM, DIM},
{knowhere::meta::TOPK, TOPK},
{knowhere::IndexParams::nlist, 100},
{knowhere::IndexParams::nprobe, 4},
{knowhere::IndexParams::m, 4},
{knowhere::IndexParams::nbits, 8},
{knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
{knowhere::meta::DEVICEID, 0},
};
// auto ds = knowhere::GenDataset(N, DIM, raw_data.data());
// auto ds2 = knowhere::GenDatasetWithIds(N / 2, DIM, raw_data.data() +
// sizeof(float[DIM]) * N / 2, uids.data() + N / 2);
// NOTE: you must train first and then add
// index->Train(ds, conf);
// index->Train(ds2, conf);
// index->AddWithoutIds(ds, conf);
// index->Add(ds2, conf);
std::vector<knowhere::DatasetPtr> datasets;
std::vector<std::vector<float>> ftrashs;
auto raw = raw_data.data();
for (int beg = 0; beg < N; beg += DefaultElementPerChunk) {
auto end = beg + DefaultElementPerChunk;
if (end > N) {
end = N;
}
std::vector<float> ft(raw + DIM * beg, raw + DIM * end);
auto ds = knowhere::GenDataset(end - beg, DIM, ft.data());
datasets.push_back(ds);
ftrashs.push_back(std::move(ft));
// // NOTE: you must train first and then add
// index->Train(ds, conf);
// index->Add(ds, conf);
}
for (auto& ds : datasets) {
index->Train(ds, conf);
}
for (auto& ds : datasets) {
index->AddWithoutIds(ds, conf);
}
auto bitmap = std::make_shared<faiss::ConcurrentBitset>(N);
// exclude the first
for (int i = 0; i < N / 2; ++i) {
bitmap->set(i);
}
// index->SetBlacklist(bitmap);
auto query_ds = knowhere::GenDataset(1, DIM, raw_data.data());
auto final = index->Query(query_ds, conf, bitmap);
auto ids = final->Get<idx_t*>(knowhere::meta::IDS);
auto distances = final->Get<float*>(knowhere::meta::DISTANCE);
for (int i = 0; i < TOPK; ++i) {
if (ids[i] < N / 2) {
cout << "WRONG: ";
}
cout << ids[i] << "->" << distances[i] << endl;
}
int i = 1 + 1;
}
TEST(Indexing, IVFFlatNM) {
// hello, world
constexpr auto DIM = 16;
constexpr auto K = 10;
auto N = 1024 * 1024 * 10;
auto num_query = 100;
Timer timer;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
std::cout << "generate data: " << timer.get_step_seconds() << " seconds" << endl;
auto indexing = std::make_shared<knowhere::IVF>();
auto conf = knowhere::Config{{knowhere::meta::DIM, DIM},
{knowhere::meta::TOPK, K},
{knowhere::IndexParams::nlist, 100},
{knowhere::IndexParams::nprobe, 4},
{knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
{knowhere::meta::DEVICEID, 0}};
auto database = knowhere::GenDataset(N, DIM, raw_data.data());
std::cout << "init ivf " << timer.get_step_seconds() << " seconds" << endl;
indexing->Train(database, conf);
std::cout << "train ivf " << timer.get_step_seconds() << " seconds" << endl;
indexing->AddWithoutIds(database, conf);
std::cout << "insert ivf " << timer.get_step_seconds() << " seconds" << endl;
EXPECT_EQ(indexing->Count(), N);
EXPECT_EQ(indexing->Dim(), DIM);
auto query_dataset = knowhere::GenDataset(num_query, DIM, raw_data.data() + DIM * 4200);
auto result = indexing->Query(query_dataset, conf, nullptr);
std::cout << "query ivf " << timer.get_step_seconds() << " seconds" << endl;
auto ids = result->Get<int64_t*>(milvus::knowhere::meta::IDS);
auto dis = result->Get<float*>(milvus::knowhere::meta::DISTANCE);
for (int i = 0; i < std::min(num_query * K, 100); ++i) {
cout << ids[i] << "->" << dis[i] << endl;
}
}
TEST(Indexing, DISABLED_BinaryBruteForce) {
int64_t N = 100000;
int64_t num_queries = 10;
int64_t topk = 5;
int64_t dim = 64;
auto result_count = topk * num_queries;
auto schema = std::make_shared<Schema>();
schema->AddField("vecbin", DataType::VECTOR_BINARY, dim);
schema->AddField("age", DataType::INT64);
auto dataset = DataGen(schema, N, 10);
vector<float> distances(result_count);
vector<int64_t> ids(result_count);
auto bin_vec = dataset.get_col<uint8_t>(0);
auto line_sizeof = schema->operator[](0).get_sizeof();
auto query_data = 1024 * line_sizeof + bin_vec.data();
query::BinarySearchBruteForce(faiss::MetricType::METRIC_Jaccard, line_sizeof, bin_vec.data(), N, topk, num_queries,
query_data, distances.data(), ids.data());
QueryResult qr;
qr.num_queries_ = num_queries;
qr.topK_ = topk;
qr.internal_seg_offsets_ = ids;
qr.result_distances_ = distances;
auto json = QueryResultToJson(qr);
auto ref = Json::parse(R"(
[
[
[
"1024->0.000000",
"86966->0.395349",
"24843->0.404762",
"13806->0.416667",
"44313->0.421053"
],
[
"1025->0.000000",
"14226->0.348837",
"1488->0.365854",
"47337->0.377778",
"20913->0.377778"
],
[
"1026->0.000000",
"81882->0.386364",
"9215->0.409091",
"95024->0.409091",
"54987->0.414634"
],
[
"1027->0.000000",
"68981->0.394737",
"75528->0.404762",
"68794->0.405405",
"21975->0.425000"
],
[
"1028->0.000000",
"90290->0.375000",
"34309->0.394737",
"58559->0.400000",
"33865->0.400000"
],
[
"1029->0.000000",
"62722->0.388889",
"89070->0.394737",
"18528->0.414634",
"94971->0.421053"
],
[
"1030->0.000000",
"67402->0.333333",
"3988->0.347826",
"86376->0.354167",
"84381->0.361702"
],
[
"1031->0.000000",
"81569->0.325581",
"12715->0.347826",
"40332->0.363636",
"21037->0.372093"
],
[
"1032->0.000000",
"60536->0.428571",
"93293->0.432432",
"70969->0.435897",
"64048->0.450000"
],
[
"1033->0.000000",
"99022->0.394737",
"11763->0.405405",
"50073->0.428571",
"97118->0.428571"
]
]
]
)");
ASSERT_EQ(json, ref);
}