mirror of https://github.com/milvus-io/milvus.git
798 lines
29 KiB
Go
798 lines
29 KiB
Go
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package importutil
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
|
|
"github.com/cockroachdb/errors"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/schemapb"
|
|
"github.com/milvus-io/milvus/internal/allocator"
|
|
"github.com/milvus-io/milvus/internal/common"
|
|
"github.com/milvus-io/milvus/internal/log"
|
|
"github.com/milvus-io/milvus/internal/storage"
|
|
"github.com/milvus-io/milvus/internal/util/timerecord"
|
|
"github.com/milvus-io/milvus/internal/util/typeutil"
|
|
"go.uber.org/zap"
|
|
)
|
|
|
|
type NumpyColumnReader struct {
|
|
fieldName string // name of the target column
|
|
fieldID storage.FieldID // ID of the target column
|
|
dataType schemapb.DataType // data type of the target column
|
|
rowCount int // how many rows need to be read
|
|
dimension int // only for vector
|
|
file storage.FileReader // file to be read
|
|
reader *NumpyAdapter // data reader
|
|
}
|
|
|
|
func closeReaders(columnReaders []*NumpyColumnReader) {
|
|
for _, reader := range columnReaders {
|
|
if reader.file != nil {
|
|
err := reader.file.Close()
|
|
if err != nil {
|
|
log.Error("Numper parser: failed to close numpy file", zap.String("fileName", reader.fieldName+NumpyFileExt))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
type NumpyParser struct {
|
|
ctx context.Context // for canceling parse process
|
|
collectionSchema *schemapb.CollectionSchema // collection schema
|
|
rowIDAllocator *allocator.IDAllocator // autoid allocator
|
|
shardNum int32 // sharding number of the collection
|
|
blockSize int64 // maximum size of a read block(unit:byte)
|
|
chunkManager storage.ChunkManager // storage interfaces to browse/read the files
|
|
autoIDRange []int64 // auto-generated id range, for example: [1, 10, 20, 25] means id from 1 to 10 and 20 to 25
|
|
callFlushFunc ImportFlushFunc // call back function to flush segment
|
|
updateProgressFunc func(percent int64) // update working progress percent value
|
|
}
|
|
|
|
// NewNumpyParser is helper function to create a NumpyParser
|
|
func NewNumpyParser(ctx context.Context,
|
|
collectionSchema *schemapb.CollectionSchema,
|
|
idAlloc *allocator.IDAllocator,
|
|
shardNum int32,
|
|
blockSize int64,
|
|
chunkManager storage.ChunkManager,
|
|
flushFunc ImportFlushFunc,
|
|
updateProgressFunc func(percent int64)) (*NumpyParser, error) {
|
|
if collectionSchema == nil {
|
|
log.Error("Numper parser: collection schema is nil")
|
|
return nil, errors.New("collection schema is nil")
|
|
}
|
|
|
|
if idAlloc == nil {
|
|
log.Error("Numper parser: id allocator is nil")
|
|
return nil, errors.New("id allocator is nil")
|
|
}
|
|
|
|
if chunkManager == nil {
|
|
log.Error("Numper parser: chunk manager pointer is nil")
|
|
return nil, errors.New("chunk manager pointer is nil")
|
|
}
|
|
|
|
if flushFunc == nil {
|
|
log.Error("Numper parser: flush function is nil")
|
|
return nil, errors.New("flush function is nil")
|
|
}
|
|
|
|
parser := &NumpyParser{
|
|
ctx: ctx,
|
|
collectionSchema: collectionSchema,
|
|
rowIDAllocator: idAlloc,
|
|
shardNum: shardNum,
|
|
blockSize: blockSize,
|
|
chunkManager: chunkManager,
|
|
autoIDRange: make([]int64, 0),
|
|
callFlushFunc: flushFunc,
|
|
updateProgressFunc: updateProgressFunc,
|
|
}
|
|
|
|
return parser, nil
|
|
}
|
|
|
|
func (p *NumpyParser) IDRange() []int64 {
|
|
return p.autoIDRange
|
|
}
|
|
|
|
// Parse is the function entry
|
|
func (p *NumpyParser) Parse(filePaths []string) error {
|
|
// check redundant files for column-based import
|
|
// if the field is primary key and autoid is false, the file is required
|
|
// any redundant file is not allowed
|
|
err := p.validateFileNames(filePaths)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// open files and verify file header
|
|
readers, err := p.createReaders(filePaths)
|
|
// make sure all the files are closed finially, must call this method before the function return
|
|
defer closeReaders(readers)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// read all data from the numpy files
|
|
err = p.consume(readers)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// validateFileNames is to check redundant file and missed file
|
|
func (p *NumpyParser) validateFileNames(filePaths []string) error {
|
|
requiredFieldNames := make(map[string]interface{})
|
|
for _, schema := range p.collectionSchema.Fields {
|
|
if schema.GetIsPrimaryKey() {
|
|
if !schema.GetAutoID() {
|
|
requiredFieldNames[schema.GetName()] = nil
|
|
}
|
|
} else {
|
|
requiredFieldNames[schema.GetName()] = nil
|
|
}
|
|
}
|
|
|
|
// check redundant file
|
|
fileNames := make(map[string]interface{})
|
|
for _, filePath := range filePaths {
|
|
name, _ := GetFileNameAndExt(filePath)
|
|
fileNames[name] = nil
|
|
_, ok := requiredFieldNames[name]
|
|
if !ok {
|
|
log.Error("Numpy parser: the file has no corresponding field in collection", zap.String("fieldName", name))
|
|
return fmt.Errorf("the file '%s' has no corresponding field in collection", filePath)
|
|
}
|
|
}
|
|
|
|
// check missed file
|
|
for name := range requiredFieldNames {
|
|
_, ok := fileNames[name]
|
|
if !ok {
|
|
log.Error("Numpy parser: there is no file corresponding to field", zap.String("fieldName", name))
|
|
return fmt.Errorf("there is no file corresponding to field '%s'", name)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// createReaders open the files and verify file header
|
|
func (p *NumpyParser) createReaders(filePaths []string) ([]*NumpyColumnReader, error) {
|
|
readers := make([]*NumpyColumnReader, 0)
|
|
|
|
for _, filePath := range filePaths {
|
|
fileName, _ := GetFileNameAndExt(filePath)
|
|
|
|
// check existence of the target field
|
|
var schema *schemapb.FieldSchema
|
|
for i := 0; i < len(p.collectionSchema.Fields); i++ {
|
|
tmpSchema := p.collectionSchema.Fields[i]
|
|
if tmpSchema.GetName() == fileName {
|
|
schema = tmpSchema
|
|
break
|
|
}
|
|
}
|
|
|
|
if schema == nil {
|
|
log.Error("Numpy parser: the field is not found in collection schema", zap.String("fileName", fileName))
|
|
return nil, fmt.Errorf("the field name '%s' is not found in collection schema", fileName)
|
|
}
|
|
|
|
file, err := p.chunkManager.Reader(p.ctx, filePath)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read the file", zap.String("filePath", filePath), zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read the file '%s', error: %s", filePath, err.Error())
|
|
}
|
|
|
|
adapter, err := NewNumpyAdapter(file)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read the file header", zap.String("filePath", filePath), zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read the file header '%s', error: %s", filePath, err.Error())
|
|
}
|
|
|
|
if file == nil || adapter == nil {
|
|
log.Error("Numpy parser: failed to open file", zap.String("filePath", filePath))
|
|
return nil, fmt.Errorf("failed to open file '%s'", filePath)
|
|
}
|
|
|
|
dim, _ := getFieldDimension(schema)
|
|
columnReader := &NumpyColumnReader{
|
|
fieldName: schema.GetName(),
|
|
fieldID: schema.GetFieldID(),
|
|
dataType: schema.GetDataType(),
|
|
dimension: dim,
|
|
file: file,
|
|
reader: adapter,
|
|
}
|
|
|
|
// the validation method only check the file header information
|
|
err = p.validateHeader(columnReader)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
readers = append(readers, columnReader)
|
|
}
|
|
|
|
// row count of each file should be equal
|
|
if len(readers) > 0 {
|
|
firstReader := readers[0]
|
|
rowCount := firstReader.rowCount
|
|
for i := 1; i < len(readers); i++ {
|
|
compareReader := readers[i]
|
|
if rowCount != compareReader.rowCount {
|
|
log.Error("Numpy parser: the row count of files are not equal",
|
|
zap.String("firstFile", firstReader.fieldName), zap.Int("firstRowCount", firstReader.rowCount),
|
|
zap.String("compareFile", compareReader.fieldName), zap.Int("compareRowCount", compareReader.rowCount))
|
|
return nil, fmt.Errorf("the row count(%d) of file '%s.npy' is not equal to row count(%d) of file '%s.npy'",
|
|
firstReader.rowCount, firstReader.fieldName, compareReader.rowCount, compareReader.fieldName)
|
|
}
|
|
}
|
|
}
|
|
|
|
return readers, nil
|
|
}
|
|
|
|
// validateHeader is to verify numpy file header, file header information should match field's schema
|
|
func (p *NumpyParser) validateHeader(columnReader *NumpyColumnReader) error {
|
|
if columnReader == nil || columnReader.reader == nil {
|
|
log.Error("Numpy parser: numpy reader is nil")
|
|
return errors.New("numpy adapter is nil")
|
|
}
|
|
|
|
elementType := columnReader.reader.GetType()
|
|
shape := columnReader.reader.GetShape()
|
|
columnReader.rowCount = shape[0]
|
|
|
|
// 1. field data type should be consist to numpy data type
|
|
// 2. vector field dimension should be consist to numpy shape
|
|
if schemapb.DataType_FloatVector == columnReader.dataType {
|
|
// float32/float64 numpy file can be used for float vector file, 2 reasons:
|
|
// 1. for float vector, we support float32 and float64 numpy file because python float value is 64 bit
|
|
// 2. for float64 numpy file, the performance is worse than float32 numpy file
|
|
if elementType != schemapb.DataType_Float && elementType != schemapb.DataType_Double {
|
|
log.Error("Numpy parser: illegal data type of numpy file for float vector field", zap.Any("dataType", elementType),
|
|
zap.String("fieldName", columnReader.fieldName))
|
|
return fmt.Errorf("illegal data type %s of numpy file for float vector field '%s'", getTypeName(elementType),
|
|
columnReader.fieldName)
|
|
}
|
|
|
|
// vector field, the shape should be 2
|
|
if len(shape) != 2 {
|
|
log.Error("Numpy parser: illegal shape of numpy file for float vector field, shape should be 2", zap.Int("shape", len(shape)),
|
|
zap.String("fieldName", columnReader.fieldName))
|
|
return fmt.Errorf("illegal shape %d of numpy file for float vector field '%s', shape should be 2", shape,
|
|
columnReader.fieldName)
|
|
}
|
|
|
|
if shape[1] != columnReader.dimension {
|
|
log.Error("Numpy parser: illegal dimension of numpy file for float vector field", zap.String("fieldName", columnReader.fieldName),
|
|
zap.Int("numpyDimension", shape[1]), zap.Int("fieldDimension", columnReader.dimension))
|
|
return fmt.Errorf("illegal dimension %d of numpy file for float vector field '%s', dimension should be %d",
|
|
shape[1], columnReader.fieldName, columnReader.dimension)
|
|
}
|
|
} else if schemapb.DataType_BinaryVector == columnReader.dataType {
|
|
if elementType != schemapb.DataType_BinaryVector {
|
|
log.Error("Numpy parser: illegal data type of numpy file for binary vector field", zap.Any("dataType", elementType),
|
|
zap.String("fieldName", columnReader.fieldName))
|
|
return fmt.Errorf("illegal data type %s of numpy file for binary vector field '%s'", getTypeName(elementType),
|
|
columnReader.fieldName)
|
|
}
|
|
|
|
// vector field, the shape should be 2
|
|
if len(shape) != 2 {
|
|
log.Error("Numpy parser: illegal shape of numpy file for binary vector field, shape should be 2", zap.Int("shape", len(shape)),
|
|
zap.String("fieldName", columnReader.fieldName))
|
|
return fmt.Errorf("illegal shape %d of numpy file for binary vector field '%s', shape should be 2", shape,
|
|
columnReader.fieldName)
|
|
}
|
|
|
|
if shape[1] != columnReader.dimension/8 {
|
|
log.Error("Numpy parser: illegal dimension of numpy file for float vector field", zap.String("fieldName", columnReader.fieldName),
|
|
zap.Int("numpyDimension", shape[1]*8), zap.Int("fieldDimension", columnReader.dimension))
|
|
return fmt.Errorf("illegal dimension %d of numpy file for binary vector field '%s', dimension should be %d",
|
|
shape[1]*8, columnReader.fieldName, columnReader.dimension)
|
|
}
|
|
} else {
|
|
if elementType != columnReader.dataType {
|
|
log.Error("Numpy parser: illegal data type of numpy file for scalar field", zap.Any("numpyDataType", elementType),
|
|
zap.String("fieldName", columnReader.fieldName), zap.Any("fieldDataType", columnReader.dataType))
|
|
return fmt.Errorf("illegal data type %s of numpy file for scalar field '%s' with type %s",
|
|
getTypeName(elementType), columnReader.fieldName, getTypeName(columnReader.dataType))
|
|
}
|
|
|
|
// scalar field, the shape should be 1
|
|
if len(shape) != 1 {
|
|
log.Error("Numpy parser: illegal shape of numpy file for scalar field, shape should be 1", zap.Int("shape", len(shape)),
|
|
zap.String("fieldName", columnReader.fieldName))
|
|
return fmt.Errorf("illegal shape %d of numpy file for scalar field '%s', shape should be 1", shape, columnReader.fieldName)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// calcRowCountPerBlock calculates a proper value for a batch row count to read file
|
|
func (p *NumpyParser) calcRowCountPerBlock() (int64, error) {
|
|
sizePerRecord, err := typeutil.EstimateSizePerRecord(p.collectionSchema)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to estimate size of each row", zap.Error(err))
|
|
return 0, fmt.Errorf("failed to estimate size of each row: %s", err.Error())
|
|
}
|
|
|
|
if sizePerRecord <= 0 {
|
|
log.Error("Numpy parser: failed to estimate size of each row, the collection schema might be empty")
|
|
return 0, fmt.Errorf("failed to estimate size of each row: the collection schema might be empty")
|
|
}
|
|
|
|
// the sizePerRecord is estimate value, if the schema contains varchar field, the value is not accurate
|
|
// we will read data block by block, by default, each block size is 16MB
|
|
// rowCountPerBlock is the estimated row count for a block
|
|
rowCountPerBlock := p.blockSize / int64(sizePerRecord)
|
|
if rowCountPerBlock <= 0 {
|
|
rowCountPerBlock = 1 // make sure the value is positive
|
|
}
|
|
|
|
log.Info("Numper parser: calculate row count per block to read file", zap.Int64("rowCountPerBlock", rowCountPerBlock),
|
|
zap.Int64("blockSize", p.blockSize), zap.Int("sizePerRecord", sizePerRecord))
|
|
return rowCountPerBlock, nil
|
|
}
|
|
|
|
// consume method reads numpy data section into a storage.FieldData
|
|
// please note it will require a large memory block(the memory size is almost equal to numpy file size)
|
|
func (p *NumpyParser) consume(columnReaders []*NumpyColumnReader) error {
|
|
rowCountPerBlock, err := p.calcRowCountPerBlock()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
updateProgress := func(readRowCount int) {
|
|
if p.updateProgressFunc != nil && len(columnReaders) != 0 && columnReaders[0].rowCount > 0 {
|
|
percent := (readRowCount * ProgressValueForPersist) / columnReaders[0].rowCount
|
|
log.Debug("Numper parser: working progress", zap.Int("readRowCount", readRowCount),
|
|
zap.Int("totalRowCount", columnReaders[0].rowCount), zap.Int("percent", percent))
|
|
p.updateProgressFunc(int64(percent))
|
|
}
|
|
}
|
|
|
|
// prepare shards
|
|
shards := make([]map[storage.FieldID]storage.FieldData, 0, p.shardNum)
|
|
for i := 0; i < int(p.shardNum); i++ {
|
|
segmentData := initSegmentData(p.collectionSchema)
|
|
if segmentData == nil {
|
|
log.Error("Numper parser: failed to initialize FieldData list")
|
|
return fmt.Errorf("failed to initialize FieldData list")
|
|
}
|
|
shards = append(shards, segmentData)
|
|
}
|
|
tr := timerecord.NewTimeRecorder("consume performance")
|
|
defer tr.Elapse("end")
|
|
// read data from files, batch by batch
|
|
totalRead := 0
|
|
for {
|
|
readRowCount := 0
|
|
segmentData := make(map[storage.FieldID]storage.FieldData)
|
|
for _, reader := range columnReaders {
|
|
fieldData, err := p.readData(reader, int(rowCountPerBlock))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if readRowCount == 0 {
|
|
readRowCount = fieldData.RowNum()
|
|
} else if readRowCount != fieldData.RowNum() {
|
|
log.Error("Numpy parser: data block's row count mismatch", zap.Int("firstBlockRowCount", readRowCount),
|
|
zap.Int("thisBlockRowCount", fieldData.RowNum()), zap.Int64("rowCountPerBlock", rowCountPerBlock))
|
|
return fmt.Errorf("data block's row count mismatch: %d vs %d", readRowCount, fieldData.RowNum())
|
|
}
|
|
|
|
segmentData[reader.fieldID] = fieldData
|
|
}
|
|
|
|
// nothing to read
|
|
if readRowCount == 0 {
|
|
break
|
|
}
|
|
totalRead += readRowCount
|
|
updateProgress(totalRead)
|
|
tr.Record("readData")
|
|
// split data to shards
|
|
err = p.splitFieldsData(segmentData, shards)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
tr.Record("splitFieldsData")
|
|
// when the estimated size is close to blockSize, save to binlog
|
|
err = tryFlushBlocks(p.ctx, shards, p.collectionSchema, p.callFlushFunc, p.blockSize, MaxTotalSizeInMemory, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
tr.Record("tryFlushBlocks")
|
|
}
|
|
|
|
// force flush at the end
|
|
return tryFlushBlocks(p.ctx, shards, p.collectionSchema, p.callFlushFunc, p.blockSize, MaxTotalSizeInMemory, true)
|
|
}
|
|
|
|
// readData method reads numpy data section into a storage.FieldData
|
|
func (p *NumpyParser) readData(columnReader *NumpyColumnReader, rowCount int) (storage.FieldData, error) {
|
|
switch columnReader.dataType {
|
|
case schemapb.DataType_Bool:
|
|
data, err := columnReader.reader.ReadBool(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read bool array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read bool array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.BoolFieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_Int8:
|
|
data, err := columnReader.reader.ReadInt8(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read int8 array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read int8 array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.Int8FieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_Int16:
|
|
data, err := columnReader.reader.ReadInt16(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to int16 array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read int16 array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.Int16FieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_Int32:
|
|
data, err := columnReader.reader.ReadInt32(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read int32 array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read int32 array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.Int32FieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_Int64:
|
|
data, err := columnReader.reader.ReadInt64(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read int64 array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read int64 array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.Int64FieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_Float:
|
|
data, err := columnReader.reader.ReadFloat32(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read float array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read float array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.FloatFieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_Double:
|
|
data, err := columnReader.reader.ReadFloat64(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read double array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read double array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.DoubleFieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_VarChar:
|
|
data, err := columnReader.reader.ReadString(rowCount)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read varchar array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read varchar array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.StringFieldData{
|
|
Data: data,
|
|
}, nil
|
|
case schemapb.DataType_BinaryVector:
|
|
data, err := columnReader.reader.ReadUint8(rowCount * (columnReader.dimension / 8))
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read binary vector array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read binary vector array: %s", err.Error())
|
|
}
|
|
|
|
return &storage.BinaryVectorFieldData{
|
|
Data: data,
|
|
Dim: columnReader.dimension,
|
|
}, nil
|
|
case schemapb.DataType_FloatVector:
|
|
// float32/float64 numpy file can be used for float vector file, 2 reasons:
|
|
// 1. for float vector, we support float32 and float64 numpy file because python float value is 64 bit
|
|
// 2. for float64 numpy file, the performance is worse than float32 numpy file
|
|
elementType := columnReader.reader.GetType()
|
|
|
|
var data []float32
|
|
var err error
|
|
if elementType == schemapb.DataType_Float {
|
|
data, err = columnReader.reader.ReadFloat32(rowCount * columnReader.dimension)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read float vector array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read float vector array: %s", err.Error())
|
|
}
|
|
} else if elementType == schemapb.DataType_Double {
|
|
data = make([]float32, 0, columnReader.rowCount)
|
|
data64, err := columnReader.reader.ReadFloat64(rowCount * columnReader.dimension)
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to read float vector array", zap.Error(err))
|
|
return nil, fmt.Errorf("failed to read float vector array: %s", err.Error())
|
|
}
|
|
|
|
for _, f64 := range data64 {
|
|
data = append(data, float32(f64))
|
|
}
|
|
}
|
|
|
|
return &storage.FloatVectorFieldData{
|
|
Data: data,
|
|
Dim: columnReader.dimension,
|
|
}, nil
|
|
default:
|
|
log.Error("Numpy parser: unsupported data type of field", zap.Any("dataType", columnReader.dataType),
|
|
zap.String("fieldName", columnReader.fieldName))
|
|
return nil, fmt.Errorf("unsupported data type %s of field '%s'", getTypeName(columnReader.dataType),
|
|
columnReader.fieldName)
|
|
}
|
|
}
|
|
|
|
// appendFunc defines the methods to append data to storage.FieldData
|
|
func (p *NumpyParser) appendFunc(schema *schemapb.FieldSchema) func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
switch schema.DataType {
|
|
case schemapb.DataType_Bool:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.BoolFieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(bool))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_Float:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.FloatFieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(float32))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_Double:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.DoubleFieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(float64))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_Int8:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.Int8FieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(int8))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_Int16:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.Int16FieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(int16))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_Int32:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.Int32FieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(int32))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_Int64:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.Int64FieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(int64))
|
|
return nil
|
|
}
|
|
case schemapb.DataType_BinaryVector:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.BinaryVectorFieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).([]byte)...)
|
|
return nil
|
|
}
|
|
case schemapb.DataType_FloatVector:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.FloatVectorFieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).([]float32)...)
|
|
return nil
|
|
}
|
|
case schemapb.DataType_String, schemapb.DataType_VarChar:
|
|
return func(src storage.FieldData, n int, target storage.FieldData) error {
|
|
arr := target.(*storage.StringFieldData)
|
|
arr.Data = append(arr.Data, src.GetRow(n).(string))
|
|
return nil
|
|
}
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
func (p *NumpyParser) prepareAppendFunctions() (map[string]func(src storage.FieldData, n int, target storage.FieldData) error, error) {
|
|
appendFunctions := make(map[string]func(src storage.FieldData, n int, target storage.FieldData) error)
|
|
for i := 0; i < len(p.collectionSchema.Fields); i++ {
|
|
schema := p.collectionSchema.Fields[i]
|
|
appendFuncErr := p.appendFunc(schema)
|
|
if appendFuncErr == nil {
|
|
log.Error("Numpy parser: unsupported field data type")
|
|
return nil, fmt.Errorf("unsupported field data type: %d", schema.GetDataType())
|
|
}
|
|
appendFunctions[schema.GetName()] = appendFuncErr
|
|
}
|
|
return appendFunctions, nil
|
|
}
|
|
|
|
// checkRowCount checks existence of each field, and returns the primary key schema
|
|
// check row count, all fields row count must be equal
|
|
func (p *NumpyParser) checkRowCount(fieldsData map[storage.FieldID]storage.FieldData) (int, *schemapb.FieldSchema, error) {
|
|
rowCount := 0
|
|
rowCounter := make(map[string]int)
|
|
var primaryKey *schemapb.FieldSchema
|
|
for i := 0; i < len(p.collectionSchema.Fields); i++ {
|
|
schema := p.collectionSchema.Fields[i]
|
|
if schema.GetIsPrimaryKey() {
|
|
primaryKey = schema
|
|
}
|
|
|
|
if !schema.GetAutoID() {
|
|
v, ok := fieldsData[schema.GetFieldID()]
|
|
if !ok {
|
|
log.Error("Numpy parser: field not provided", zap.String("fieldName", schema.GetName()))
|
|
return 0, nil, fmt.Errorf("field '%s' not provided", schema.GetName())
|
|
}
|
|
rowCounter[schema.GetName()] = v.RowNum()
|
|
if v.RowNum() > rowCount {
|
|
rowCount = v.RowNum()
|
|
}
|
|
}
|
|
}
|
|
if primaryKey == nil {
|
|
log.Error("Numpy parser: primary key field is not found")
|
|
return 0, nil, fmt.Errorf("primary key field is not found")
|
|
}
|
|
|
|
for name, count := range rowCounter {
|
|
if count != rowCount {
|
|
log.Error("Numpy parser: field row count is not equal to other fields row count", zap.String("fieldName", name),
|
|
zap.Int("rowCount", count), zap.Int("otherRowCount", rowCount))
|
|
return 0, nil, fmt.Errorf("field '%s' row count %d is not equal to other fields row count: %d", name, count, rowCount)
|
|
}
|
|
}
|
|
// log.Info("Numpy parser: try to split a block with row count", zap.Int("rowCount", rowCount))
|
|
|
|
return rowCount, primaryKey, nil
|
|
}
|
|
|
|
// splitFieldsData is to split the in-memory data(parsed from column-based files) into shards
|
|
func (p *NumpyParser) splitFieldsData(fieldsData map[storage.FieldID]storage.FieldData, shards []map[storage.FieldID]storage.FieldData) error {
|
|
if len(fieldsData) == 0 {
|
|
log.Error("Numpy parser: fields data to split is empty")
|
|
return fmt.Errorf("fields data to split is empty")
|
|
}
|
|
|
|
if len(shards) != int(p.shardNum) {
|
|
log.Error("Numpy parser: block count is not equal to collection shard number", zap.Int("shardsLen", len(shards)),
|
|
zap.Int32("shardNum", p.shardNum))
|
|
return fmt.Errorf("block count %d is not equal to collection shard number %d", len(shards), p.shardNum)
|
|
}
|
|
|
|
rowCount, primaryKey, err := p.checkRowCount(fieldsData)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// generate auto id for primary key and rowid field
|
|
rowIDBegin, rowIDEnd, err := p.rowIDAllocator.Alloc(uint32(rowCount))
|
|
if err != nil {
|
|
log.Error("Numpy parser: failed to alloc row ID", zap.Int("rowCount", rowCount), zap.Error(err))
|
|
return fmt.Errorf("failed to alloc %d rows ID, error: %w", rowCount, err)
|
|
}
|
|
|
|
rowIDField, ok := fieldsData[common.RowIDField]
|
|
if !ok {
|
|
rowIDField = &storage.Int64FieldData{
|
|
Data: make([]int64, 0),
|
|
}
|
|
fieldsData[common.RowIDField] = rowIDField
|
|
}
|
|
rowIDFieldArr := rowIDField.(*storage.Int64FieldData)
|
|
for i := rowIDBegin; i < rowIDEnd; i++ {
|
|
rowIDFieldArr.Data = append(rowIDFieldArr.Data, i)
|
|
}
|
|
|
|
// reset the primary keys, as we know, only int64 pk can be auto-generated
|
|
if primaryKey.GetAutoID() {
|
|
log.Info("Numpy parser: generating auto-id", zap.Int("rowCount", rowCount), zap.Int64("rowIDBegin", rowIDBegin))
|
|
if primaryKey.GetDataType() != schemapb.DataType_Int64 {
|
|
log.Error("Numpy parser: primary key field is auto-generated but the field type is not int64")
|
|
return fmt.Errorf("primary key field is auto-generated but the field type is not int64")
|
|
}
|
|
|
|
primaryDataArr := &storage.Int64FieldData{
|
|
Data: make([]int64, 0, rowCount),
|
|
}
|
|
for i := rowIDBegin; i < rowIDEnd; i++ {
|
|
primaryDataArr.Data = append(primaryDataArr.Data, i)
|
|
}
|
|
|
|
fieldsData[primaryKey.GetFieldID()] = primaryDataArr
|
|
p.autoIDRange = append(p.autoIDRange, rowIDBegin, rowIDEnd)
|
|
}
|
|
|
|
// if the primary key is not auto-gernerate and user doesn't provide, return error
|
|
primaryData, ok := fieldsData[primaryKey.GetFieldID()]
|
|
if !ok || primaryData.RowNum() <= 0 {
|
|
log.Error("Numpy parser: primary key field is not provided", zap.String("keyName", primaryKey.GetName()))
|
|
return fmt.Errorf("primary key '%s' field data is not provided", primaryKey.GetName())
|
|
}
|
|
|
|
// prepare append functions
|
|
appendFunctions, err := p.prepareAppendFunctions()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// split data into shards
|
|
for i := 0; i < rowCount; i++ {
|
|
// hash to a shard number
|
|
|
|
pk := primaryData.GetRow(i)
|
|
shard, err := pkToShard(pk, uint32(p.shardNum))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// set rowID field
|
|
rowIDField := shards[shard][common.RowIDField].(*storage.Int64FieldData)
|
|
rowIDField.Data = append(rowIDField.Data, rowIDFieldArr.GetRow(i).(int64))
|
|
|
|
// append row to shard
|
|
for k := 0; k < len(p.collectionSchema.Fields); k++ {
|
|
schema := p.collectionSchema.Fields[k]
|
|
srcData := fieldsData[schema.GetFieldID()]
|
|
targetData := shards[shard][schema.GetFieldID()]
|
|
if srcData == nil || targetData == nil {
|
|
log.Error("Numpy parser: cannot append data since source or target field data is nil",
|
|
zap.String("FieldName", schema.GetName()),
|
|
zap.Bool("sourceNil", srcData == nil), zap.Bool("targetNil", targetData == nil))
|
|
return fmt.Errorf("cannot append data for field '%s' since source or target field data is nil",
|
|
primaryKey.GetName())
|
|
}
|
|
appendFunc := appendFunctions[schema.GetName()]
|
|
err := appendFunc(srcData, i, targetData)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|