milvus/internal/util/importutil/numpy_parser.go

798 lines
29 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package importutil
import (
"context"
"fmt"
"github.com/cockroachdb/errors"
"github.com/milvus-io/milvus-proto/go-api/schemapb"
"github.com/milvus-io/milvus/internal/allocator"
"github.com/milvus-io/milvus/internal/common"
"github.com/milvus-io/milvus/internal/log"
"github.com/milvus-io/milvus/internal/storage"
"github.com/milvus-io/milvus/internal/util/timerecord"
"github.com/milvus-io/milvus/internal/util/typeutil"
"go.uber.org/zap"
)
type NumpyColumnReader struct {
fieldName string // name of the target column
fieldID storage.FieldID // ID of the target column
dataType schemapb.DataType // data type of the target column
rowCount int // how many rows need to be read
dimension int // only for vector
file storage.FileReader // file to be read
reader *NumpyAdapter // data reader
}
func closeReaders(columnReaders []*NumpyColumnReader) {
for _, reader := range columnReaders {
if reader.file != nil {
err := reader.file.Close()
if err != nil {
log.Error("Numper parser: failed to close numpy file", zap.String("fileName", reader.fieldName+NumpyFileExt))
}
}
}
}
type NumpyParser struct {
ctx context.Context // for canceling parse process
collectionSchema *schemapb.CollectionSchema // collection schema
rowIDAllocator *allocator.IDAllocator // autoid allocator
shardNum int32 // sharding number of the collection
blockSize int64 // maximum size of a read block(unit:byte)
chunkManager storage.ChunkManager // storage interfaces to browse/read the files
autoIDRange []int64 // auto-generated id range, for example: [1, 10, 20, 25] means id from 1 to 10 and 20 to 25
callFlushFunc ImportFlushFunc // call back function to flush segment
updateProgressFunc func(percent int64) // update working progress percent value
}
// NewNumpyParser is helper function to create a NumpyParser
func NewNumpyParser(ctx context.Context,
collectionSchema *schemapb.CollectionSchema,
idAlloc *allocator.IDAllocator,
shardNum int32,
blockSize int64,
chunkManager storage.ChunkManager,
flushFunc ImportFlushFunc,
updateProgressFunc func(percent int64)) (*NumpyParser, error) {
if collectionSchema == nil {
log.Error("Numper parser: collection schema is nil")
return nil, errors.New("collection schema is nil")
}
if idAlloc == nil {
log.Error("Numper parser: id allocator is nil")
return nil, errors.New("id allocator is nil")
}
if chunkManager == nil {
log.Error("Numper parser: chunk manager pointer is nil")
return nil, errors.New("chunk manager pointer is nil")
}
if flushFunc == nil {
log.Error("Numper parser: flush function is nil")
return nil, errors.New("flush function is nil")
}
parser := &NumpyParser{
ctx: ctx,
collectionSchema: collectionSchema,
rowIDAllocator: idAlloc,
shardNum: shardNum,
blockSize: blockSize,
chunkManager: chunkManager,
autoIDRange: make([]int64, 0),
callFlushFunc: flushFunc,
updateProgressFunc: updateProgressFunc,
}
return parser, nil
}
func (p *NumpyParser) IDRange() []int64 {
return p.autoIDRange
}
// Parse is the function entry
func (p *NumpyParser) Parse(filePaths []string) error {
// check redundant files for column-based import
// if the field is primary key and autoid is false, the file is required
// any redundant file is not allowed
err := p.validateFileNames(filePaths)
if err != nil {
return err
}
// open files and verify file header
readers, err := p.createReaders(filePaths)
// make sure all the files are closed finially, must call this method before the function return
defer closeReaders(readers)
if err != nil {
return err
}
// read all data from the numpy files
err = p.consume(readers)
if err != nil {
return err
}
return nil
}
// validateFileNames is to check redundant file and missed file
func (p *NumpyParser) validateFileNames(filePaths []string) error {
requiredFieldNames := make(map[string]interface{})
for _, schema := range p.collectionSchema.Fields {
if schema.GetIsPrimaryKey() {
if !schema.GetAutoID() {
requiredFieldNames[schema.GetName()] = nil
}
} else {
requiredFieldNames[schema.GetName()] = nil
}
}
// check redundant file
fileNames := make(map[string]interface{})
for _, filePath := range filePaths {
name, _ := GetFileNameAndExt(filePath)
fileNames[name] = nil
_, ok := requiredFieldNames[name]
if !ok {
log.Error("Numpy parser: the file has no corresponding field in collection", zap.String("fieldName", name))
return fmt.Errorf("the file '%s' has no corresponding field in collection", filePath)
}
}
// check missed file
for name := range requiredFieldNames {
_, ok := fileNames[name]
if !ok {
log.Error("Numpy parser: there is no file corresponding to field", zap.String("fieldName", name))
return fmt.Errorf("there is no file corresponding to field '%s'", name)
}
}
return nil
}
// createReaders open the files and verify file header
func (p *NumpyParser) createReaders(filePaths []string) ([]*NumpyColumnReader, error) {
readers := make([]*NumpyColumnReader, 0)
for _, filePath := range filePaths {
fileName, _ := GetFileNameAndExt(filePath)
// check existence of the target field
var schema *schemapb.FieldSchema
for i := 0; i < len(p.collectionSchema.Fields); i++ {
tmpSchema := p.collectionSchema.Fields[i]
if tmpSchema.GetName() == fileName {
schema = tmpSchema
break
}
}
if schema == nil {
log.Error("Numpy parser: the field is not found in collection schema", zap.String("fileName", fileName))
return nil, fmt.Errorf("the field name '%s' is not found in collection schema", fileName)
}
file, err := p.chunkManager.Reader(p.ctx, filePath)
if err != nil {
log.Error("Numpy parser: failed to read the file", zap.String("filePath", filePath), zap.Error(err))
return nil, fmt.Errorf("failed to read the file '%s', error: %s", filePath, err.Error())
}
adapter, err := NewNumpyAdapter(file)
if err != nil {
log.Error("Numpy parser: failed to read the file header", zap.String("filePath", filePath), zap.Error(err))
return nil, fmt.Errorf("failed to read the file header '%s', error: %s", filePath, err.Error())
}
if file == nil || adapter == nil {
log.Error("Numpy parser: failed to open file", zap.String("filePath", filePath))
return nil, fmt.Errorf("failed to open file '%s'", filePath)
}
dim, _ := getFieldDimension(schema)
columnReader := &NumpyColumnReader{
fieldName: schema.GetName(),
fieldID: schema.GetFieldID(),
dataType: schema.GetDataType(),
dimension: dim,
file: file,
reader: adapter,
}
// the validation method only check the file header information
err = p.validateHeader(columnReader)
if err != nil {
return nil, err
}
readers = append(readers, columnReader)
}
// row count of each file should be equal
if len(readers) > 0 {
firstReader := readers[0]
rowCount := firstReader.rowCount
for i := 1; i < len(readers); i++ {
compareReader := readers[i]
if rowCount != compareReader.rowCount {
log.Error("Numpy parser: the row count of files are not equal",
zap.String("firstFile", firstReader.fieldName), zap.Int("firstRowCount", firstReader.rowCount),
zap.String("compareFile", compareReader.fieldName), zap.Int("compareRowCount", compareReader.rowCount))
return nil, fmt.Errorf("the row count(%d) of file '%s.npy' is not equal to row count(%d) of file '%s.npy'",
firstReader.rowCount, firstReader.fieldName, compareReader.rowCount, compareReader.fieldName)
}
}
}
return readers, nil
}
// validateHeader is to verify numpy file header, file header information should match field's schema
func (p *NumpyParser) validateHeader(columnReader *NumpyColumnReader) error {
if columnReader == nil || columnReader.reader == nil {
log.Error("Numpy parser: numpy reader is nil")
return errors.New("numpy adapter is nil")
}
elementType := columnReader.reader.GetType()
shape := columnReader.reader.GetShape()
columnReader.rowCount = shape[0]
// 1. field data type should be consist to numpy data type
// 2. vector field dimension should be consist to numpy shape
if schemapb.DataType_FloatVector == columnReader.dataType {
// float32/float64 numpy file can be used for float vector file, 2 reasons:
// 1. for float vector, we support float32 and float64 numpy file because python float value is 64 bit
// 2. for float64 numpy file, the performance is worse than float32 numpy file
if elementType != schemapb.DataType_Float && elementType != schemapb.DataType_Double {
log.Error("Numpy parser: illegal data type of numpy file for float vector field", zap.Any("dataType", elementType),
zap.String("fieldName", columnReader.fieldName))
return fmt.Errorf("illegal data type %s of numpy file for float vector field '%s'", getTypeName(elementType),
columnReader.fieldName)
}
// vector field, the shape should be 2
if len(shape) != 2 {
log.Error("Numpy parser: illegal shape of numpy file for float vector field, shape should be 2", zap.Int("shape", len(shape)),
zap.String("fieldName", columnReader.fieldName))
return fmt.Errorf("illegal shape %d of numpy file for float vector field '%s', shape should be 2", shape,
columnReader.fieldName)
}
if shape[1] != columnReader.dimension {
log.Error("Numpy parser: illegal dimension of numpy file for float vector field", zap.String("fieldName", columnReader.fieldName),
zap.Int("numpyDimension", shape[1]), zap.Int("fieldDimension", columnReader.dimension))
return fmt.Errorf("illegal dimension %d of numpy file for float vector field '%s', dimension should be %d",
shape[1], columnReader.fieldName, columnReader.dimension)
}
} else if schemapb.DataType_BinaryVector == columnReader.dataType {
if elementType != schemapb.DataType_BinaryVector {
log.Error("Numpy parser: illegal data type of numpy file for binary vector field", zap.Any("dataType", elementType),
zap.String("fieldName", columnReader.fieldName))
return fmt.Errorf("illegal data type %s of numpy file for binary vector field '%s'", getTypeName(elementType),
columnReader.fieldName)
}
// vector field, the shape should be 2
if len(shape) != 2 {
log.Error("Numpy parser: illegal shape of numpy file for binary vector field, shape should be 2", zap.Int("shape", len(shape)),
zap.String("fieldName", columnReader.fieldName))
return fmt.Errorf("illegal shape %d of numpy file for binary vector field '%s', shape should be 2", shape,
columnReader.fieldName)
}
if shape[1] != columnReader.dimension/8 {
log.Error("Numpy parser: illegal dimension of numpy file for float vector field", zap.String("fieldName", columnReader.fieldName),
zap.Int("numpyDimension", shape[1]*8), zap.Int("fieldDimension", columnReader.dimension))
return fmt.Errorf("illegal dimension %d of numpy file for binary vector field '%s', dimension should be %d",
shape[1]*8, columnReader.fieldName, columnReader.dimension)
}
} else {
if elementType != columnReader.dataType {
log.Error("Numpy parser: illegal data type of numpy file for scalar field", zap.Any("numpyDataType", elementType),
zap.String("fieldName", columnReader.fieldName), zap.Any("fieldDataType", columnReader.dataType))
return fmt.Errorf("illegal data type %s of numpy file for scalar field '%s' with type %s",
getTypeName(elementType), columnReader.fieldName, getTypeName(columnReader.dataType))
}
// scalar field, the shape should be 1
if len(shape) != 1 {
log.Error("Numpy parser: illegal shape of numpy file for scalar field, shape should be 1", zap.Int("shape", len(shape)),
zap.String("fieldName", columnReader.fieldName))
return fmt.Errorf("illegal shape %d of numpy file for scalar field '%s', shape should be 1", shape, columnReader.fieldName)
}
}
return nil
}
// calcRowCountPerBlock calculates a proper value for a batch row count to read file
func (p *NumpyParser) calcRowCountPerBlock() (int64, error) {
sizePerRecord, err := typeutil.EstimateSizePerRecord(p.collectionSchema)
if err != nil {
log.Error("Numpy parser: failed to estimate size of each row", zap.Error(err))
return 0, fmt.Errorf("failed to estimate size of each row: %s", err.Error())
}
if sizePerRecord <= 0 {
log.Error("Numpy parser: failed to estimate size of each row, the collection schema might be empty")
return 0, fmt.Errorf("failed to estimate size of each row: the collection schema might be empty")
}
// the sizePerRecord is estimate value, if the schema contains varchar field, the value is not accurate
// we will read data block by block, by default, each block size is 16MB
// rowCountPerBlock is the estimated row count for a block
rowCountPerBlock := p.blockSize / int64(sizePerRecord)
if rowCountPerBlock <= 0 {
rowCountPerBlock = 1 // make sure the value is positive
}
log.Info("Numper parser: calculate row count per block to read file", zap.Int64("rowCountPerBlock", rowCountPerBlock),
zap.Int64("blockSize", p.blockSize), zap.Int("sizePerRecord", sizePerRecord))
return rowCountPerBlock, nil
}
// consume method reads numpy data section into a storage.FieldData
// please note it will require a large memory block(the memory size is almost equal to numpy file size)
func (p *NumpyParser) consume(columnReaders []*NumpyColumnReader) error {
rowCountPerBlock, err := p.calcRowCountPerBlock()
if err != nil {
return err
}
updateProgress := func(readRowCount int) {
if p.updateProgressFunc != nil && len(columnReaders) != 0 && columnReaders[0].rowCount > 0 {
percent := (readRowCount * ProgressValueForPersist) / columnReaders[0].rowCount
log.Debug("Numper parser: working progress", zap.Int("readRowCount", readRowCount),
zap.Int("totalRowCount", columnReaders[0].rowCount), zap.Int("percent", percent))
p.updateProgressFunc(int64(percent))
}
}
// prepare shards
shards := make([]map[storage.FieldID]storage.FieldData, 0, p.shardNum)
for i := 0; i < int(p.shardNum); i++ {
segmentData := initSegmentData(p.collectionSchema)
if segmentData == nil {
log.Error("Numper parser: failed to initialize FieldData list")
return fmt.Errorf("failed to initialize FieldData list")
}
shards = append(shards, segmentData)
}
tr := timerecord.NewTimeRecorder("consume performance")
defer tr.Elapse("end")
// read data from files, batch by batch
totalRead := 0
for {
readRowCount := 0
segmentData := make(map[storage.FieldID]storage.FieldData)
for _, reader := range columnReaders {
fieldData, err := p.readData(reader, int(rowCountPerBlock))
if err != nil {
return err
}
if readRowCount == 0 {
readRowCount = fieldData.RowNum()
} else if readRowCount != fieldData.RowNum() {
log.Error("Numpy parser: data block's row count mismatch", zap.Int("firstBlockRowCount", readRowCount),
zap.Int("thisBlockRowCount", fieldData.RowNum()), zap.Int64("rowCountPerBlock", rowCountPerBlock))
return fmt.Errorf("data block's row count mismatch: %d vs %d", readRowCount, fieldData.RowNum())
}
segmentData[reader.fieldID] = fieldData
}
// nothing to read
if readRowCount == 0 {
break
}
totalRead += readRowCount
updateProgress(totalRead)
tr.Record("readData")
// split data to shards
err = p.splitFieldsData(segmentData, shards)
if err != nil {
return err
}
tr.Record("splitFieldsData")
// when the estimated size is close to blockSize, save to binlog
err = tryFlushBlocks(p.ctx, shards, p.collectionSchema, p.callFlushFunc, p.blockSize, MaxTotalSizeInMemory, false)
if err != nil {
return err
}
tr.Record("tryFlushBlocks")
}
// force flush at the end
return tryFlushBlocks(p.ctx, shards, p.collectionSchema, p.callFlushFunc, p.blockSize, MaxTotalSizeInMemory, true)
}
// readData method reads numpy data section into a storage.FieldData
func (p *NumpyParser) readData(columnReader *NumpyColumnReader, rowCount int) (storage.FieldData, error) {
switch columnReader.dataType {
case schemapb.DataType_Bool:
data, err := columnReader.reader.ReadBool(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read bool array", zap.Error(err))
return nil, fmt.Errorf("failed to read bool array: %s", err.Error())
}
return &storage.BoolFieldData{
Data: data,
}, nil
case schemapb.DataType_Int8:
data, err := columnReader.reader.ReadInt8(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read int8 array", zap.Error(err))
return nil, fmt.Errorf("failed to read int8 array: %s", err.Error())
}
return &storage.Int8FieldData{
Data: data,
}, nil
case schemapb.DataType_Int16:
data, err := columnReader.reader.ReadInt16(rowCount)
if err != nil {
log.Error("Numpy parser: failed to int16 array", zap.Error(err))
return nil, fmt.Errorf("failed to read int16 array: %s", err.Error())
}
return &storage.Int16FieldData{
Data: data,
}, nil
case schemapb.DataType_Int32:
data, err := columnReader.reader.ReadInt32(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read int32 array", zap.Error(err))
return nil, fmt.Errorf("failed to read int32 array: %s", err.Error())
}
return &storage.Int32FieldData{
Data: data,
}, nil
case schemapb.DataType_Int64:
data, err := columnReader.reader.ReadInt64(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read int64 array", zap.Error(err))
return nil, fmt.Errorf("failed to read int64 array: %s", err.Error())
}
return &storage.Int64FieldData{
Data: data,
}, nil
case schemapb.DataType_Float:
data, err := columnReader.reader.ReadFloat32(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read float array", zap.Error(err))
return nil, fmt.Errorf("failed to read float array: %s", err.Error())
}
return &storage.FloatFieldData{
Data: data,
}, nil
case schemapb.DataType_Double:
data, err := columnReader.reader.ReadFloat64(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read double array", zap.Error(err))
return nil, fmt.Errorf("failed to read double array: %s", err.Error())
}
return &storage.DoubleFieldData{
Data: data,
}, nil
case schemapb.DataType_VarChar:
data, err := columnReader.reader.ReadString(rowCount)
if err != nil {
log.Error("Numpy parser: failed to read varchar array", zap.Error(err))
return nil, fmt.Errorf("failed to read varchar array: %s", err.Error())
}
return &storage.StringFieldData{
Data: data,
}, nil
case schemapb.DataType_BinaryVector:
data, err := columnReader.reader.ReadUint8(rowCount * (columnReader.dimension / 8))
if err != nil {
log.Error("Numpy parser: failed to read binary vector array", zap.Error(err))
return nil, fmt.Errorf("failed to read binary vector array: %s", err.Error())
}
return &storage.BinaryVectorFieldData{
Data: data,
Dim: columnReader.dimension,
}, nil
case schemapb.DataType_FloatVector:
// float32/float64 numpy file can be used for float vector file, 2 reasons:
// 1. for float vector, we support float32 and float64 numpy file because python float value is 64 bit
// 2. for float64 numpy file, the performance is worse than float32 numpy file
elementType := columnReader.reader.GetType()
var data []float32
var err error
if elementType == schemapb.DataType_Float {
data, err = columnReader.reader.ReadFloat32(rowCount * columnReader.dimension)
if err != nil {
log.Error("Numpy parser: failed to read float vector array", zap.Error(err))
return nil, fmt.Errorf("failed to read float vector array: %s", err.Error())
}
} else if elementType == schemapb.DataType_Double {
data = make([]float32, 0, columnReader.rowCount)
data64, err := columnReader.reader.ReadFloat64(rowCount * columnReader.dimension)
if err != nil {
log.Error("Numpy parser: failed to read float vector array", zap.Error(err))
return nil, fmt.Errorf("failed to read float vector array: %s", err.Error())
}
for _, f64 := range data64 {
data = append(data, float32(f64))
}
}
return &storage.FloatVectorFieldData{
Data: data,
Dim: columnReader.dimension,
}, nil
default:
log.Error("Numpy parser: unsupported data type of field", zap.Any("dataType", columnReader.dataType),
zap.String("fieldName", columnReader.fieldName))
return nil, fmt.Errorf("unsupported data type %s of field '%s'", getTypeName(columnReader.dataType),
columnReader.fieldName)
}
}
// appendFunc defines the methods to append data to storage.FieldData
func (p *NumpyParser) appendFunc(schema *schemapb.FieldSchema) func(src storage.FieldData, n int, target storage.FieldData) error {
switch schema.DataType {
case schemapb.DataType_Bool:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.BoolFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(bool))
return nil
}
case schemapb.DataType_Float:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.FloatFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(float32))
return nil
}
case schemapb.DataType_Double:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.DoubleFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(float64))
return nil
}
case schemapb.DataType_Int8:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int8FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int8))
return nil
}
case schemapb.DataType_Int16:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int16FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int16))
return nil
}
case schemapb.DataType_Int32:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int32FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int32))
return nil
}
case schemapb.DataType_Int64:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int64FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int64))
return nil
}
case schemapb.DataType_BinaryVector:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.BinaryVectorFieldData)
arr.Data = append(arr.Data, src.GetRow(n).([]byte)...)
return nil
}
case schemapb.DataType_FloatVector:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.FloatVectorFieldData)
arr.Data = append(arr.Data, src.GetRow(n).([]float32)...)
return nil
}
case schemapb.DataType_String, schemapb.DataType_VarChar:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.StringFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(string))
return nil
}
default:
return nil
}
}
func (p *NumpyParser) prepareAppendFunctions() (map[string]func(src storage.FieldData, n int, target storage.FieldData) error, error) {
appendFunctions := make(map[string]func(src storage.FieldData, n int, target storage.FieldData) error)
for i := 0; i < len(p.collectionSchema.Fields); i++ {
schema := p.collectionSchema.Fields[i]
appendFuncErr := p.appendFunc(schema)
if appendFuncErr == nil {
log.Error("Numpy parser: unsupported field data type")
return nil, fmt.Errorf("unsupported field data type: %d", schema.GetDataType())
}
appendFunctions[schema.GetName()] = appendFuncErr
}
return appendFunctions, nil
}
// checkRowCount checks existence of each field, and returns the primary key schema
// check row count, all fields row count must be equal
func (p *NumpyParser) checkRowCount(fieldsData map[storage.FieldID]storage.FieldData) (int, *schemapb.FieldSchema, error) {
rowCount := 0
rowCounter := make(map[string]int)
var primaryKey *schemapb.FieldSchema
for i := 0; i < len(p.collectionSchema.Fields); i++ {
schema := p.collectionSchema.Fields[i]
if schema.GetIsPrimaryKey() {
primaryKey = schema
}
if !schema.GetAutoID() {
v, ok := fieldsData[schema.GetFieldID()]
if !ok {
log.Error("Numpy parser: field not provided", zap.String("fieldName", schema.GetName()))
return 0, nil, fmt.Errorf("field '%s' not provided", schema.GetName())
}
rowCounter[schema.GetName()] = v.RowNum()
if v.RowNum() > rowCount {
rowCount = v.RowNum()
}
}
}
if primaryKey == nil {
log.Error("Numpy parser: primary key field is not found")
return 0, nil, fmt.Errorf("primary key field is not found")
}
for name, count := range rowCounter {
if count != rowCount {
log.Error("Numpy parser: field row count is not equal to other fields row count", zap.String("fieldName", name),
zap.Int("rowCount", count), zap.Int("otherRowCount", rowCount))
return 0, nil, fmt.Errorf("field '%s' row count %d is not equal to other fields row count: %d", name, count, rowCount)
}
}
// log.Info("Numpy parser: try to split a block with row count", zap.Int("rowCount", rowCount))
return rowCount, primaryKey, nil
}
// splitFieldsData is to split the in-memory data(parsed from column-based files) into shards
func (p *NumpyParser) splitFieldsData(fieldsData map[storage.FieldID]storage.FieldData, shards []map[storage.FieldID]storage.FieldData) error {
if len(fieldsData) == 0 {
log.Error("Numpy parser: fields data to split is empty")
return fmt.Errorf("fields data to split is empty")
}
if len(shards) != int(p.shardNum) {
log.Error("Numpy parser: block count is not equal to collection shard number", zap.Int("shardsLen", len(shards)),
zap.Int32("shardNum", p.shardNum))
return fmt.Errorf("block count %d is not equal to collection shard number %d", len(shards), p.shardNum)
}
rowCount, primaryKey, err := p.checkRowCount(fieldsData)
if err != nil {
return err
}
// generate auto id for primary key and rowid field
rowIDBegin, rowIDEnd, err := p.rowIDAllocator.Alloc(uint32(rowCount))
if err != nil {
log.Error("Numpy parser: failed to alloc row ID", zap.Int("rowCount", rowCount), zap.Error(err))
return fmt.Errorf("failed to alloc %d rows ID, error: %w", rowCount, err)
}
rowIDField, ok := fieldsData[common.RowIDField]
if !ok {
rowIDField = &storage.Int64FieldData{
Data: make([]int64, 0),
}
fieldsData[common.RowIDField] = rowIDField
}
rowIDFieldArr := rowIDField.(*storage.Int64FieldData)
for i := rowIDBegin; i < rowIDEnd; i++ {
rowIDFieldArr.Data = append(rowIDFieldArr.Data, i)
}
// reset the primary keys, as we know, only int64 pk can be auto-generated
if primaryKey.GetAutoID() {
log.Info("Numpy parser: generating auto-id", zap.Int("rowCount", rowCount), zap.Int64("rowIDBegin", rowIDBegin))
if primaryKey.GetDataType() != schemapb.DataType_Int64 {
log.Error("Numpy parser: primary key field is auto-generated but the field type is not int64")
return fmt.Errorf("primary key field is auto-generated but the field type is not int64")
}
primaryDataArr := &storage.Int64FieldData{
Data: make([]int64, 0, rowCount),
}
for i := rowIDBegin; i < rowIDEnd; i++ {
primaryDataArr.Data = append(primaryDataArr.Data, i)
}
fieldsData[primaryKey.GetFieldID()] = primaryDataArr
p.autoIDRange = append(p.autoIDRange, rowIDBegin, rowIDEnd)
}
// if the primary key is not auto-gernerate and user doesn't provide, return error
primaryData, ok := fieldsData[primaryKey.GetFieldID()]
if !ok || primaryData.RowNum() <= 0 {
log.Error("Numpy parser: primary key field is not provided", zap.String("keyName", primaryKey.GetName()))
return fmt.Errorf("primary key '%s' field data is not provided", primaryKey.GetName())
}
// prepare append functions
appendFunctions, err := p.prepareAppendFunctions()
if err != nil {
return err
}
// split data into shards
for i := 0; i < rowCount; i++ {
// hash to a shard number
pk := primaryData.GetRow(i)
shard, err := pkToShard(pk, uint32(p.shardNum))
if err != nil {
return err
}
// set rowID field
rowIDField := shards[shard][common.RowIDField].(*storage.Int64FieldData)
rowIDField.Data = append(rowIDField.Data, rowIDFieldArr.GetRow(i).(int64))
// append row to shard
for k := 0; k < len(p.collectionSchema.Fields); k++ {
schema := p.collectionSchema.Fields[k]
srcData := fieldsData[schema.GetFieldID()]
targetData := shards[shard][schema.GetFieldID()]
if srcData == nil || targetData == nil {
log.Error("Numpy parser: cannot append data since source or target field data is nil",
zap.String("FieldName", schema.GetName()),
zap.Bool("sourceNil", srcData == nil), zap.Bool("targetNil", targetData == nil))
return fmt.Errorf("cannot append data for field '%s' since source or target field data is nil",
primaryKey.GetName())
}
appendFunc := appendFunctions[schema.GetName()]
err := appendFunc(srcData, i, targetData)
if err != nil {
return err
}
}
}
return nil
}