milvus/cpp/unittest/wrapper/wrapper_test.cpp

246 lines
10 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "utils/easylogging++.h"
#include "src/wrapper/vec_index.h"
#include "knowhere/index/vector_index/helpers/FaissGpuResourceMgr.h"
#include "utils.h"
#include <gtest/gtest.h>
INITIALIZE_EASYLOGGINGPP
using namespace zilliz::milvus::engine;
//using namespace zilliz::knowhere;
using ::testing::TestWithParam;
using ::testing::Values;
using ::testing::Combine;
constexpr int64_t DIM = 128;
constexpr int64_t NB = 100000;
constexpr int64_t DEVICE_ID = 0;
class KnowhereWrapperTest
: public TestWithParam<::std::tuple<IndexType, std::string, int, int, int, int, Config, Config>> {
protected:
void SetUp() override {
zilliz::knowhere::FaissGpuResourceMgr::GetInstance().InitDevice(DEVICE_ID, 1024*1024*200, 1024*1024*300, 2);
std::string generator_type;
std::tie(index_type, generator_type, dim, nb, nq, k, train_cfg, search_cfg) = GetParam();
auto generator = std::make_shared<DataGenBase>();
generator->GenData(dim, nb, nq, xb, xq, ids, k, gt_ids, gt_dis);
index_ = GetVecIndexFactory(index_type);
}
void TearDown() override {
zilliz::knowhere::FaissGpuResourceMgr::GetInstance().Free();
}
void AssertResult(const std::vector<long> &ids, const std::vector<float> &dis) {
EXPECT_EQ(ids.size(), nq * k);
EXPECT_EQ(dis.size(), nq * k);
for (auto i = 0; i < nq; i++) {
EXPECT_EQ(ids[i * k], gt_ids[i * k]);
//EXPECT_EQ(dis[i * k], gt_dis[i * k]);
}
int match = 0;
for (int i = 0; i < nq; ++i) {
for (int j = 0; j < k; ++j) {
for (int l = 0; l < k; ++l) {
if (ids[i * nq + j] == gt_ids[i * nq + l]) match++;
}
}
}
auto precision = float(match) / (nq * k);
EXPECT_GT(precision, 0.5);
std::cout << std::endl << "Precision: " << precision
<< ", match: " << match
<< ", total: " << nq * k
<< std::endl;
}
protected:
IndexType index_type;
Config train_cfg;
Config search_cfg;
int dim = DIM;
int nb = NB;
int nq = 10;
int k = 10;
std::vector<float> xb;
std::vector<float> xq;
std::vector<long> ids;
VecIndexPtr index_ = nullptr;
// Ground Truth
std::vector<long> gt_ids;
std::vector<float> gt_dis;
};
INSTANTIATE_TEST_CASE_P(WrapperParam, KnowhereWrapperTest,
Values(
//["Index type", "Generator type", "dim", "nb", "nq", "k", "build config", "search config"]
std::make_tuple(IndexType::FAISS_IVFFLAT_CPU, "Default",
64, 100000, 10, 10,
Config::object{{"nlist", 100}, {"dim", 64}, {"metric_type", "L2"}},
Config::object{{"dim", 64}, {"k", 10}, {"nprobe", 10}}
),
// to_gpu_test Failed
std::make_tuple(IndexType::FAISS_IVFFLAT_GPU, "Default",
DIM, NB, 10, 10,
Config::object{{"nlist", 100}, {"dim", DIM}, {"metric_type", "L2"}, {"gpu_id", DEVICE_ID}},
Config::object{{"dim", DIM}, {"k", 10}, {"nprobe", 40}}
),
std::make_tuple(IndexType::FAISS_IVFFLAT_MIX, "Default",
64, 100000, 10, 10,
Config::object{{"nlist", 1000}, {"dim", 64}, {"metric_type", "L2"}},
Config::object{{"dim", 64}, {"k", 10}, {"nprobe", 5}}
),
std::make_tuple(IndexType::FAISS_IDMAP, "Default",
64, 100000, 10, 10,
Config::object{{"dim", 64}, {"metric_type", "L2"}},
Config::object{{"dim", 64}, {"k", 10}}
),
std::make_tuple(IndexType::FAISS_IVFSQ8_CPU, "Default",
DIM, NB, 10, 10,
Config::object{{"dim", DIM}, {"nlist", 1000}, {"nbits", 8}, {"metric_type", "L2"}, {"gpu_id", DEVICE_ID}},
Config::object{{"dim", DIM}, {"k", 10}, {"nprobe", 5}}
),
std::make_tuple(IndexType::FAISS_IVFSQ8_GPU, "Default",
DIM, NB, 10, 10,
Config::object{{"dim", DIM}, {"nlist", 1000}, {"nbits", 8}, {"metric_type", "L2"}, {"gpu_id", DEVICE_ID}},
Config::object{{"dim", DIM}, {"k", 10}, {"nprobe", 5}}
),
std::make_tuple(IndexType::FAISS_IVFSQ8_MIX, "Default",
DIM, NB, 10, 10,
Config::object{{"dim", DIM}, {"nlist", 1000}, {"nbits", 8}, {"metric_type", "L2"}, {"gpu_id", DEVICE_ID}},
Config::object{{"dim", DIM}, {"k", 10}, {"nprobe", 5}}
)
// std::make_tuple(IndexType::NSG_MIX, "Default",
// 128, 250000, 10, 10,
// Config::object{{"dim", 128}, {"nlist", 8192}, {"nprobe", 16}, {"metric_type", "L2"},
// {"knng", 200}, {"search_length", 40}, {"out_degree", 60}, {"candidate_pool_size", 200}},
// Config::object{{"k", 10}, {"search_length", 20}}
// )
//std::make_tuple(IndexType::SPTAG_KDT_RNT_CPU, "Default",
// 64, 10000, 10, 10,
// Config::object{{"TPTNumber", 1}, {"dim", 64}},
// Config::object{{"dim", 64}, {"k", 10}}
//)
)
);
TEST_P(KnowhereWrapperTest, BASE_TEST) {
EXPECT_EQ(index_->GetType(), index_type);
auto elems = nq * k;
std::vector<int64_t> res_ids(elems);
std::vector<float> res_dis(elems);
index_->BuildAll(nb, xb.data(), ids.data(), train_cfg);
index_->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
AssertResult(res_ids, res_dis);
}
TEST_P(KnowhereWrapperTest, TO_GPU_TEST) {
EXPECT_EQ(index_->GetType(), index_type);
auto elems = nq * k;
std::vector<int64_t> res_ids(elems);
std::vector<float> res_dis(elems);
index_->BuildAll(nb, xb.data(), ids.data(), train_cfg);
index_->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
AssertResult(res_ids, res_dis);
{
auto dev_idx = index_->CopyToGpu(DEVICE_ID);
for (int i = 0; i < 10; ++i) {
dev_idx->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
}
AssertResult(res_ids, res_dis);
}
{
std::string file_location = "/tmp/knowhere_gpu_file";
write_index(index_, file_location);
auto new_index = read_index(file_location);
auto dev_idx = new_index->CopyToGpu(DEVICE_ID);
for (int i = 0; i < 10; ++i) {
dev_idx->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
}
AssertResult(res_ids, res_dis);
}
}
TEST_P(KnowhereWrapperTest, TO_CPU_TEST) {
// dev
}
TEST_P(KnowhereWrapperTest, SERIALIZE_TEST) {
EXPECT_EQ(index_->GetType(), index_type);
auto elems = nq * k;
std::vector<int64_t> res_ids(elems);
std::vector<float> res_dis(elems);
index_->BuildAll(nb, xb.data(), ids.data(), train_cfg);
index_->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
AssertResult(res_ids, res_dis);
{
auto binary = index_->Serialize();
auto type = index_->GetType();
auto new_index = GetVecIndexFactory(type);
new_index->Load(binary);
EXPECT_EQ(new_index->Dimension(), index_->Dimension());
EXPECT_EQ(new_index->Count(), index_->Count());
std::vector<int64_t> res_ids(elems);
std::vector<float> res_dis(elems);
new_index->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
AssertResult(res_ids, res_dis);
}
{
std::string file_location = "/tmp/knowhere";
write_index(index_, file_location);
auto new_index = read_index(file_location);
EXPECT_EQ(new_index->GetType(), ConvertToCpuIndexType(index_type));
EXPECT_EQ(new_index->Dimension(), index_->Dimension());
EXPECT_EQ(new_index->Count(), index_->Count());
std::vector<int64_t> res_ids(elems);
std::vector<float> res_dis(elems);
new_index->Search(nq, xq.data(), res_dis.data(), res_ids.data(), search_cfg);
AssertResult(res_ids, res_dis);
}
}
// TODO(linxj): add exception test
//TEST_P(KnowhereWrapperTest, exception_test) {
//}