milvus/cpp/unittest/db/mem_test.cpp

433 lines
13 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "gtest/gtest.h"
#include "db/insert/VectorSource.h"
#include "db/insert/MemTableFile.h"
#include "db/insert/MemTable.h"
#include "db/Constants.h"
#include "db/engine/EngineFactory.h"
#include "db/meta/MetaConsts.h"
#include "metrics/Metrics.h"
#include "utils.h"
#include <boost/filesystem.hpp>
#include <thread>
#include <fstream>
#include <iostream>
#include <cmath>
#include <random>
#include <chrono>
using namespace zilliz::milvus;
namespace {
static std::string TABLE_NAME = "test_group";
static constexpr int64_t TABLE_DIM = 256;
std::string GenTableName() {
auto now = std::chrono::system_clock::now();
auto micros = std::chrono::duration_cast<std::chrono::microseconds>(
now.time_since_epoch()).count();
TABLE_NAME = std::to_string(micros);
return TABLE_NAME;
}
engine::meta::TableSchema BuildTableSchema() {
engine::meta::TableSchema table_info;
table_info.dimension_ = TABLE_DIM;
table_info.table_id_ = GenTableName();
table_info.engine_type_ = (int) engine::EngineType::FAISS_IDMAP;
return table_info;
}
void BuildVectors(int64_t n, std::vector<float> &vectors) {
vectors.clear();
vectors.resize(n * TABLE_DIM);
float *data = vectors.data();
for (int i = 0; i < n; i++) {
for (int j = 0; j < TABLE_DIM; j++)
data[TABLE_DIM * i + j] = drand48();
}
}
}
TEST_F(MemManagerTest, VECTOR_SOURCE_TEST) {
engine::meta::TableSchema table_schema = BuildTableSchema();
auto status = impl_->CreateTable(table_schema);
ASSERT_TRUE(status.ok());
engine::meta::TableFileSchema table_file_schema;
table_file_schema.table_id_ = TABLE_NAME;
status = impl_->CreateTableFile(table_file_schema);
ASSERT_TRUE(status.ok());
int64_t n = 100;
std::vector<float> vectors;
BuildVectors(n, vectors);
engine::VectorSource source(n, vectors.data());
size_t num_vectors_added;
engine::ExecutionEnginePtr execution_engine_ =
engine::EngineFactory::Build(table_file_schema.dimension_,
table_file_schema.location_,
(engine::EngineType) table_file_schema.engine_type_,
(engine::MetricType)table_file_schema.metric_type_,
table_schema.nlist_);
engine::IDNumbers vector_ids;
status = source.Add(execution_engine_, table_file_schema, 50, num_vectors_added, vector_ids);
ASSERT_TRUE(status.ok());
vector_ids = source.GetVectorIds();
ASSERT_EQ(vector_ids.size(), 50);
ASSERT_EQ(num_vectors_added, 50);
vector_ids.clear();
status = source.Add(execution_engine_, table_file_schema, 60, num_vectors_added, vector_ids);
ASSERT_TRUE(status.ok());
ASSERT_EQ(num_vectors_added, 50);
vector_ids = source.GetVectorIds();
ASSERT_EQ(vector_ids.size(), 100);
}
TEST_F(MemManagerTest, MEM_TABLE_FILE_TEST) {
auto options = GetOptions();
engine::meta::TableSchema table_schema = BuildTableSchema();
auto status = impl_->CreateTable(table_schema);
ASSERT_TRUE(status.ok());
engine::MemTableFile mem_table_file(TABLE_NAME, impl_, options);
int64_t n_100 = 100;
std::vector<float> vectors_100;
BuildVectors(n_100, vectors_100);
engine::VectorSourcePtr source = std::make_shared<engine::VectorSource>(n_100, vectors_100.data());
engine::IDNumbers vector_ids;
status = mem_table_file.Add(source, vector_ids);
ASSERT_TRUE(status.ok());
// std::cout << mem_table_file.GetCurrentMem() << " " << mem_table_file.GetMemLeft() << std::endl;
vector_ids = source->GetVectorIds();
ASSERT_EQ(vector_ids.size(), 100);
size_t singleVectorMem = sizeof(float) * TABLE_DIM;
ASSERT_EQ(mem_table_file.GetCurrentMem(), n_100 * singleVectorMem);
int64_t n_max = engine::MAX_TABLE_FILE_MEM / singleVectorMem;
std::vector<float> vectors_128M;
BuildVectors(n_max, vectors_128M);
engine::VectorSourcePtr source_128M = std::make_shared<engine::VectorSource>(n_max, vectors_128M.data());
vector_ids.clear();
status = mem_table_file.Add(source_128M, vector_ids);
vector_ids = source_128M->GetVectorIds();
ASSERT_EQ(vector_ids.size(), n_max - n_100);
ASSERT_TRUE(mem_table_file.IsFull());
}
TEST_F(MemManagerTest, MEM_TABLE_TEST) {
auto options = GetOptions();
engine::meta::TableSchema table_schema = BuildTableSchema();
auto status = impl_->CreateTable(table_schema);
ASSERT_TRUE(status.ok());
int64_t n_100 = 100;
std::vector<float> vectors_100;
BuildVectors(n_100, vectors_100);
engine::VectorSourcePtr source_100 = std::make_shared<engine::VectorSource>(n_100, vectors_100.data());
engine::MemTable mem_table(TABLE_NAME, impl_, options);
engine::IDNumbers vector_ids;
status = mem_table.Add(source_100, vector_ids);
ASSERT_TRUE(status.ok());
vector_ids = source_100->GetVectorIds();
ASSERT_EQ(vector_ids.size(), 100);
engine::MemTableFilePtr mem_table_file;
mem_table.GetCurrentMemTableFile(mem_table_file);
size_t singleVectorMem = sizeof(float) * TABLE_DIM;
ASSERT_EQ(mem_table_file->GetCurrentMem(), n_100 * singleVectorMem);
int64_t n_max = engine::MAX_TABLE_FILE_MEM / singleVectorMem;
std::vector<float> vectors_128M;
BuildVectors(n_max, vectors_128M);
vector_ids.clear();
engine::VectorSourcePtr source_128M = std::make_shared<engine::VectorSource>(n_max, vectors_128M.data());
status = mem_table.Add(source_128M, vector_ids);
ASSERT_TRUE(status.ok());
vector_ids = source_128M->GetVectorIds();
ASSERT_EQ(vector_ids.size(), n_max);
mem_table.GetCurrentMemTableFile(mem_table_file);
ASSERT_EQ(mem_table_file->GetCurrentMem(), n_100 * singleVectorMem);
ASSERT_EQ(mem_table.GetTableFileCount(), 2);
int64_t n_1G = 1024000;
std::vector<float> vectors_1G;
BuildVectors(n_1G, vectors_1G);
engine::VectorSourcePtr source_1G = std::make_shared<engine::VectorSource>(n_1G, vectors_1G.data());
vector_ids.clear();
status = mem_table.Add(source_1G, vector_ids);
ASSERT_TRUE(status.ok());
vector_ids = source_1G->GetVectorIds();
ASSERT_EQ(vector_ids.size(), n_1G);
int expectedTableFileCount = 2 + std::ceil((n_1G - n_100) * singleVectorMem / engine::MAX_TABLE_FILE_MEM);
ASSERT_EQ(mem_table.GetTableFileCount(), expectedTableFileCount);
status = mem_table.Serialize();
ASSERT_TRUE(status.ok());
}
TEST_F(MemManagerTest2, SERIAL_INSERT_SEARCH_TEST) {
engine::meta::TableSchema table_info = BuildTableSchema();
auto stat = db_->CreateTable(table_info);
engine::meta::TableSchema table_info_get;
table_info_get.table_id_ = TABLE_NAME;
stat = db_->DescribeTable(table_info_get);
ASSERT_TRUE(stat.ok());
ASSERT_EQ(table_info_get.dimension_, TABLE_DIM);
int64_t nb = 100000;
std::vector<float> xb;
BuildVectors(nb, xb);
engine::IDNumbers vector_ids;
for(int64_t i = 0; i < nb; i++) {
vector_ids.push_back(i);
}
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
ASSERT_TRUE(stat.ok());
std::this_thread::sleep_for(std::chrono::seconds(3));//ensure raw data write to disk
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int64_t> dis(0, nb - 1);
int64_t num_query = 10;
std::map<int64_t, std::vector<float>> search_vectors;
for (int64_t i = 0; i < num_query; ++i) {
int64_t index = dis(gen);
std::vector<float> search;
for (int64_t j = 0; j < TABLE_DIM; j++) {
search.push_back(xb[index * TABLE_DIM + j]);
}
search_vectors.insert(std::make_pair(vector_ids[index], search));
}
int topk = 10, nprobe = 10;
for (auto &pair : search_vectors) {
auto &search = pair.second;
engine::QueryResults results;
stat = db_->Query(TABLE_NAME, topk, 1, nprobe, search.data(), results);
ASSERT_EQ(results[0][0].first, pair.first);
ASSERT_LT(results[0][0].second, 1e-4);
}
}
TEST_F(MemManagerTest2, INSERT_TEST) {
engine::meta::TableSchema table_info = BuildTableSchema();
auto stat = db_->CreateTable(table_info);
engine::meta::TableSchema table_info_get;
table_info_get.table_id_ = TABLE_NAME;
stat = db_->DescribeTable(table_info_get);
ASSERT_TRUE(stat.ok());
ASSERT_EQ(table_info_get.dimension_, TABLE_DIM);
auto start_time = METRICS_NOW_TIME;
int insert_loop = 20;
for (int i = 0; i < insert_loop; ++i) {
int64_t nb = 40960;
std::vector<float> xb;
BuildVectors(nb, xb);
engine::IDNumbers vector_ids;
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
ASSERT_TRUE(stat.ok());
}
auto end_time = METRICS_NOW_TIME;
auto total_time = METRICS_MICROSECONDS(start_time, end_time);
LOG(DEBUG) << "total_time spent in INSERT_TEST (ms) : " << total_time;
}
TEST_F(MemManagerTest2, CONCURRENT_INSERT_SEARCH_TEST) {
engine::meta::TableSchema table_info = BuildTableSchema();
auto stat = db_->CreateTable(table_info);
engine::meta::TableSchema table_info_get;
table_info_get.table_id_ = TABLE_NAME;
stat = db_->DescribeTable(table_info_get);
ASSERT_TRUE(stat.ok());
ASSERT_EQ(table_info_get.dimension_, TABLE_DIM);
engine::IDNumbers vector_ids;
engine::IDNumbers target_ids;
int64_t nb = 40960;
std::vector<float> xb;
BuildVectors(nb, xb);
int64_t qb = 5;
std::vector<float> qxb;
BuildVectors(qb, qxb);
std::thread search([&]() {
engine::QueryResults results;
int k = 10;
std::this_thread::sleep_for(std::chrono::seconds(2));
INIT_TIMER;
std::stringstream ss;
uint64_t count = 0;
uint64_t prev_count = 0;
for (auto j = 0; j < 10; ++j) {
ss.str("");
db_->Size(count);
prev_count = count;
START_TIMER;
stat = db_->Query(TABLE_NAME, k, qb, 10, qxb.data(), results);
ss << "Search " << j << " With Size " << count / engine::meta::M << " M";
STOP_TIMER(ss.str());
ASSERT_TRUE(stat.ok());
for (auto k = 0; k < qb; ++k) {
ASSERT_EQ(results[k][0].first, target_ids[k]);
ss.str("");
ss << "Result [" << k << "]:";
for (auto result : results[k]) {
ss << result.first << " ";
}
/* LOG(DEBUG) << ss.str(); */
}
ASSERT_TRUE(count >= prev_count);
std::this_thread::sleep_for(std::chrono::seconds(1));
}
});
int loop = 20;
for (auto i = 0; i < loop; ++i) {
if (i == 0) {
db_->InsertVectors(TABLE_NAME, qb, qxb.data(), target_ids);
ASSERT_EQ(target_ids.size(), qb);
} else {
db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
}
std::this_thread::sleep_for(std::chrono::microseconds(1));
}
search.join();
};
TEST_F(MemManagerTest2, VECTOR_IDS_TEST) {
engine::meta::TableSchema table_info = BuildTableSchema();
auto stat = db_->CreateTable(table_info);
engine::meta::TableSchema table_info_get;
table_info_get.table_id_ = TABLE_NAME;
stat = db_->DescribeTable(table_info_get);
ASSERT_TRUE(stat.ok());
ASSERT_EQ(table_info_get.dimension_, TABLE_DIM);
engine::IDNumbers vector_ids;
int64_t nb = 100000;
std::vector<float> xb;
BuildVectors(nb, xb);
vector_ids.resize(nb);
for (auto i = 0; i < nb; i++) {
vector_ids[i] = i;
}
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
ASSERT_EQ(vector_ids[0], 0);
ASSERT_TRUE(stat.ok());
nb = 25000;
xb.clear();
BuildVectors(nb, xb);
vector_ids.clear();
vector_ids.resize(nb);
for (auto i = 0; i < nb; i++) {
vector_ids[i] = i + nb;
}
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
ASSERT_EQ(vector_ids[0], nb);
ASSERT_TRUE(stat.ok());
nb = 262144; //512M
xb.clear();
BuildVectors(nb, xb);
vector_ids.clear();
vector_ids.resize(nb);
for (auto i = 0; i < nb; i++) {
vector_ids[i] = i + nb / 2;
}
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
ASSERT_EQ(vector_ids[0], nb/2);
ASSERT_TRUE(stat.ok());
nb = 65536; //128M
xb.clear();
BuildVectors(nb, xb);
vector_ids.clear();
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
ASSERT_TRUE(stat.ok());
nb = 100;
xb.clear();
BuildVectors(nb, xb);
vector_ids.clear();
vector_ids.resize(nb);
for (auto i = 0; i < nb; i++) {
vector_ids[i] = i + nb;
}
stat = db_->InsertVectors(TABLE_NAME, nb, xb.data(), vector_ids);
for (auto i = 0; i < nb; i++) {
ASSERT_EQ(vector_ids[i], i + nb);
}
}