mirror of https://github.com/milvus-io/milvus.git
697 lines
20 KiB
Python
697 lines
20 KiB
Python
import os
|
|
import sys
|
|
import random
|
|
import string
|
|
import struct
|
|
import logging
|
|
import time, datetime
|
|
import copy
|
|
import numpy as np
|
|
from milvus import Milvus, IndexType, MetricType
|
|
|
|
port = 19530
|
|
epsilon = 0.000001
|
|
default_flush_interval = 1
|
|
big_flush_interval = 1000
|
|
|
|
all_index_types = [
|
|
IndexType.FLAT,
|
|
IndexType.IVFLAT,
|
|
IndexType.IVF_SQ8,
|
|
IndexType.IVF_SQ8H,
|
|
IndexType.IVF_PQ,
|
|
IndexType.HNSW,
|
|
IndexType.RNSG,
|
|
IndexType.ANNOY
|
|
]
|
|
|
|
|
|
def get_milvus(host, port, uri=None, handler=None, **kwargs):
|
|
if handler is None:
|
|
handler = "GRPC"
|
|
try_connect = kwargs.get("try_connect", True)
|
|
if uri is not None:
|
|
milvus = Milvus(uri=uri, handler=handler, try_connect=try_connect)
|
|
else:
|
|
milvus = Milvus(host=host, port=port, handler=handler, try_connect=try_connect)
|
|
return milvus
|
|
|
|
|
|
def disable_flush(connect):
|
|
status, reply = connect.set_config("storage", "auto_flush_interval", big_flush_interval)
|
|
assert status.OK()
|
|
|
|
|
|
def enable_flush(connect):
|
|
# reset auto_flush_interval=1
|
|
status, reply = connect.set_config("storage", "auto_flush_interval", default_flush_interval)
|
|
assert status.OK()
|
|
status, config_value = connect.get_config("storage", "auto_flush_interval")
|
|
assert status.OK()
|
|
assert config_value == str(default_flush_interval)
|
|
|
|
|
|
def gen_inaccuracy(num):
|
|
return num / 255.0
|
|
|
|
|
|
def gen_vectors(num, dim):
|
|
return [[random.random() for _ in range(dim)] for _ in range(num)]
|
|
|
|
|
|
def gen_binary_vectors(num, dim):
|
|
raw_vectors = []
|
|
binary_vectors = []
|
|
for i in range(num):
|
|
raw_vector = [random.randint(0, 1) for i in range(dim)]
|
|
raw_vectors.append(raw_vector)
|
|
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
|
return raw_vectors, binary_vectors
|
|
|
|
|
|
def jaccard(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
|
|
|
|
|
def hamming(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return np.bitwise_xor(x, y).sum()
|
|
|
|
|
|
def tanimoto(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return -np.log2(np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()))
|
|
|
|
|
|
def substructure(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
|
|
|
|
|
|
def superstructure(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
|
|
|
|
|
|
def gen_binary_sub_vectors(vectors, length):
|
|
raw_vectors = []
|
|
binary_vectors = []
|
|
dim = len(vectors[0])
|
|
for i in range(length):
|
|
raw_vector = [0 for i in range(dim)]
|
|
vector = vectors[i]
|
|
for index, j in enumerate(vector):
|
|
if j == 1:
|
|
raw_vector[index] = 1
|
|
raw_vectors.append(raw_vector)
|
|
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
|
return raw_vectors, binary_vectors
|
|
|
|
|
|
def gen_binary_super_vectors(vectors, length):
|
|
raw_vectors = []
|
|
binary_vectors = []
|
|
dim = len(vectors[0])
|
|
for i in range(length):
|
|
cnt_1 = np.count_nonzero(vectors[i])
|
|
raw_vector = [1 for i in range(dim)]
|
|
raw_vectors.append(raw_vector)
|
|
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
|
return raw_vectors, binary_vectors
|
|
|
|
|
|
def gen_single_vector(dim):
|
|
return [[random.random() for _ in range(dim)]]
|
|
|
|
|
|
def gen_vector(nb, d, seed=np.random.RandomState(1234)):
|
|
xb = seed.rand(nb, d).astype("float32")
|
|
return xb.tolist()
|
|
|
|
|
|
def gen_unique_str(str_value=None):
|
|
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
|
|
return "test_" + prefix if str_value is None else str_value + "_" + prefix
|
|
|
|
|
|
def gen_long_str(num):
|
|
string = ''
|
|
for _ in range(num):
|
|
char = random.choice('tomorrow')
|
|
string += char
|
|
|
|
|
|
def gen_invalid_ips():
|
|
ips = [
|
|
# "255.0.0.0",
|
|
# "255.255.0.0",
|
|
# "255.255.255.0",
|
|
# "255.255.255.255",
|
|
"127.0.0",
|
|
# "123.0.0.2",
|
|
"12-s",
|
|
" ",
|
|
"12 s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"中文",
|
|
"a".join("a" for _ in range(256))
|
|
]
|
|
return ips
|
|
|
|
|
|
def gen_invalid_ports():
|
|
ports = [
|
|
# empty
|
|
" ",
|
|
-1,
|
|
# too big port
|
|
100000,
|
|
# not correct port
|
|
39540,
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"中文"
|
|
]
|
|
return ports
|
|
|
|
|
|
def gen_invalid_uris():
|
|
ip = None
|
|
uris = [
|
|
" ",
|
|
"中文",
|
|
# invalid protocol
|
|
# "tc://%s:%s" % (ip, port),
|
|
# "tcp%s:%s" % (ip, port),
|
|
|
|
# # invalid port
|
|
# "tcp://%s:100000" % ip,
|
|
# "tcp://%s: " % ip,
|
|
# "tcp://%s:19540" % ip,
|
|
# "tcp://%s:-1" % ip,
|
|
# "tcp://%s:string" % ip,
|
|
|
|
# invalid ip
|
|
"tcp:// :19530",
|
|
# "tcp://123.0.0.1:%s" % port,
|
|
"tcp://127.0.0:19530",
|
|
# "tcp://255.0.0.0:%s" % port,
|
|
# "tcp://255.255.0.0:%s" % port,
|
|
# "tcp://255.255.255.0:%s" % port,
|
|
# "tcp://255.255.255.255:%s" % port,
|
|
"tcp://\n:19530",
|
|
]
|
|
return uris
|
|
|
|
|
|
def gen_invalid_collection_names():
|
|
collection_names = [
|
|
"12-s",
|
|
" ",
|
|
# "",
|
|
# None,
|
|
"12 s",
|
|
"BB。A",
|
|
"c|c",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return collection_names
|
|
|
|
|
|
def gen_invalid_top_ks():
|
|
top_ks = [
|
|
0,
|
|
-1,
|
|
None,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return top_ks
|
|
|
|
|
|
def gen_invalid_dims():
|
|
dims = [
|
|
0,
|
|
-1,
|
|
100001,
|
|
1000000000000001,
|
|
None,
|
|
False,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return dims
|
|
|
|
|
|
def gen_invalid_file_sizes():
|
|
file_sizes = [
|
|
0,
|
|
-1,
|
|
1000000000000001,
|
|
None,
|
|
False,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return file_sizes
|
|
|
|
|
|
def gen_invalid_index_types():
|
|
invalid_types = [
|
|
0,
|
|
-1,
|
|
100,
|
|
1000000000000001,
|
|
# None,
|
|
False,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return invalid_types
|
|
|
|
|
|
def gen_invalid_params():
|
|
params = [
|
|
9999999999,
|
|
-1,
|
|
# None,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文"
|
|
]
|
|
return params
|
|
|
|
|
|
def gen_invalid_nprobes():
|
|
nprobes = [
|
|
0,
|
|
-1,
|
|
1000000000000001,
|
|
None,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文"
|
|
]
|
|
return nprobes
|
|
|
|
|
|
def gen_invalid_metric_types():
|
|
metric_types = [
|
|
0,
|
|
-1,
|
|
1000000000000001,
|
|
# None,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文"
|
|
]
|
|
return metric_types
|
|
|
|
|
|
def gen_invalid_vectors():
|
|
invalid_vectors = [
|
|
"1*2",
|
|
[],
|
|
[1],
|
|
[1,2],
|
|
[" "],
|
|
['a'],
|
|
[None],
|
|
None,
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return invalid_vectors
|
|
|
|
|
|
def gen_invalid_vector_ids():
|
|
invalid_vector_ids = [
|
|
1.0,
|
|
-1.0,
|
|
None,
|
|
# int 64
|
|
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
|
|
" ",
|
|
"",
|
|
"String",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"=c",
|
|
"中文",
|
|
]
|
|
return invalid_vector_ids
|
|
|
|
|
|
def gen_invalid_cache_config():
|
|
invalid_configs = [
|
|
0,
|
|
-1,
|
|
9223372036854775808,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"'123'",
|
|
"さようなら"
|
|
]
|
|
return invalid_configs
|
|
|
|
|
|
def gen_invalid_gpu_config():
|
|
invalid_configs = [
|
|
-1,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"'123'",
|
|
]
|
|
return invalid_configs
|
|
|
|
|
|
def gen_invaild_search_params():
|
|
invalid_search_key = 100
|
|
search_params = []
|
|
for index_type in all_index_types:
|
|
if index_type == IndexType.FLAT:
|
|
continue
|
|
search_params.append({"index_type": index_type, "search_param": {"invalid_key": invalid_search_key}})
|
|
if index_type in [IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ]:
|
|
for nprobe in gen_invalid_params():
|
|
ivf_search_params = {"index_type": index_type, "search_param": {"nprobe": nprobe}}
|
|
search_params.append(ivf_search_params)
|
|
elif index_type == IndexType.HNSW:
|
|
for ef in gen_invalid_params():
|
|
hnsw_search_param = {"index_type": index_type, "search_param": {"ef": ef}}
|
|
search_params.append(hnsw_search_param)
|
|
elif index_type == IndexType.RNSG:
|
|
for search_length in gen_invalid_params():
|
|
nsg_search_param = {"index_type": index_type, "search_param": {"search_length": search_length}}
|
|
search_params.append(nsg_search_param)
|
|
search_params.append({"index_type": index_type, "search_param": {"invalid_key": 100}})
|
|
elif index_type == IndexType.ANNOY:
|
|
for search_k in gen_invalid_params():
|
|
if isinstance(search_k, int):
|
|
continue
|
|
annoy_search_param = {"index_type": index_type, "search_param": {"search_k": search_k}}
|
|
search_params.append(annoy_search_param)
|
|
return search_params
|
|
|
|
|
|
def gen_invalid_index():
|
|
index_params = []
|
|
for index_type in gen_invalid_index_types():
|
|
index_param = {"index_type": index_type, "index_param": {"nlist": 1024}}
|
|
index_params.append(index_param)
|
|
for nlist in gen_invalid_params():
|
|
index_param = {"index_type": IndexType.IVFLAT, "index_param": {"nlist": nlist}}
|
|
index_params.append(index_param)
|
|
for M in gen_invalid_params():
|
|
index_param = {"index_type": IndexType.HNSW, "index_param": {"M": M, "efConstruction": 100}}
|
|
index_params.append(index_param)
|
|
for efConstruction in gen_invalid_params():
|
|
index_param = {"index_type": IndexType.HNSW, "index_param": {"M": 16, "efConstruction": efConstruction}}
|
|
index_params.append(index_param)
|
|
for search_length in gen_invalid_params():
|
|
index_param = {"index_type": IndexType.RNSG,
|
|
"index_param": {"search_length": search_length, "out_degree": 40, "candidate_pool_size": 50,
|
|
"knng": 100}}
|
|
index_params.append(index_param)
|
|
for out_degree in gen_invalid_params():
|
|
index_param = {"index_type": IndexType.RNSG,
|
|
"index_param": {"search_length": 100, "out_degree": out_degree, "candidate_pool_size": 50,
|
|
"knng": 100}}
|
|
index_params.append(index_param)
|
|
for candidate_pool_size in gen_invalid_params():
|
|
index_param = {"index_type": IndexType.RNSG, "index_param": {"search_length": 100, "out_degree": 40,
|
|
"candidate_pool_size": candidate_pool_size,
|
|
"knng": 100}}
|
|
index_params.append(index_param)
|
|
index_params.append({"index_type": IndexType.IVF_FLAT, "index_param": {"invalid_key": 1024}})
|
|
index_params.append({"index_type": IndexType.HNSW, "index_param": {"invalid_key": 16, "efConstruction": 100}})
|
|
index_params.append({"index_type": IndexType.RNSG,
|
|
"index_param": {"invalid_key": 100, "out_degree": 40, "candidate_pool_size": 300,
|
|
"knng": 100}})
|
|
for invalid_n_trees in gen_invalid_params():
|
|
index_params.append({"index_type": IndexType.ANNOY, "index_param": {"n_trees": invalid_n_trees}})
|
|
|
|
return index_params
|
|
|
|
|
|
def gen_index():
|
|
nlists = [1, 1024, 16384]
|
|
pq_ms = [128, 64, 32, 16, 8, 4]
|
|
Ms = [5, 24, 48]
|
|
efConstructions = [100, 300, 500]
|
|
search_lengths = [10, 100, 300]
|
|
out_degrees = [5, 40, 300]
|
|
candidate_pool_sizes = [50, 100, 300]
|
|
knngs = [5, 100, 300]
|
|
|
|
index_params = []
|
|
for index_type in all_index_types:
|
|
if index_type == IndexType.FLAT:
|
|
index_params.append({"index_type": index_type, "index_param": {"nlist": 1024}})
|
|
elif index_type in [IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H]:
|
|
ivf_params = [{"index_type": index_type, "index_param": {"nlist": nlist}} \
|
|
for nlist in nlists]
|
|
index_params.extend(ivf_params)
|
|
elif index_type == IndexType.IVF_PQ:
|
|
ivf_pq_params = [{"index_type": index_type, "index_param": {"nlist": nlist, "m": m}} \
|
|
for nlist in nlists \
|
|
for m in pq_ms]
|
|
index_params.extend(ivf_pq_params)
|
|
elif index_type == IndexType.HNSW:
|
|
hnsw_params = [{"index_type": index_type, "index_param": {"M": M, "efConstruction": efConstruction}} \
|
|
for M in Ms \
|
|
for efConstruction in efConstructions]
|
|
index_params.extend(hnsw_params)
|
|
elif index_type == IndexType.RNSG:
|
|
nsg_params = [{"index_type": index_type,
|
|
"index_param": {"search_length": search_length, "out_degree": out_degree,
|
|
"candidate_pool_size": candidate_pool_size, "knng": knng}} \
|
|
for search_length in search_lengths \
|
|
for out_degree in out_degrees \
|
|
for candidate_pool_size in candidate_pool_sizes \
|
|
for knng in knngs]
|
|
index_params.extend(nsg_params)
|
|
|
|
return index_params
|
|
|
|
|
|
def gen_simple_index():
|
|
params = [
|
|
{"nlist": 1024},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024, "m": 16},
|
|
{"M": 48, "efConstruction": 500},
|
|
{"search_length": 50, "out_degree": 40, "candidate_pool_size": 100, "knng": 50},
|
|
{"n_trees": 4}
|
|
]
|
|
index_params = []
|
|
for i in range(len(all_index_types)):
|
|
index_params.append({"index_type": all_index_types[i], "index_param": params[i]})
|
|
return index_params
|
|
|
|
|
|
def get_search_param(index_type):
|
|
if index_type in [IndexType.FLAT, IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ]:
|
|
return {"nprobe": 32}
|
|
elif index_type == IndexType.HNSW:
|
|
return {"ef": 64}
|
|
elif index_type == IndexType.RNSG:
|
|
return {"search_length": 100}
|
|
elif index_type == IndexType.ANNOY:
|
|
return {"search_k": 100}
|
|
|
|
else:
|
|
logging.getLogger().info("Invalid index_type.")
|
|
|
|
|
|
def assert_has_collection(conn, collection_name):
|
|
status, ok = conn.has_collection(collection_name)
|
|
return status.OK() and ok
|
|
|
|
|
|
def assert_equal_vector(v1, v2):
|
|
if len(v1) != len(v2):
|
|
assert False
|
|
for i in range(len(v1)):
|
|
assert abs(v1[i] - v2[i]) < epsilon
|
|
|
|
|
|
def restart_server(helm_release_name):
|
|
res = True
|
|
timeout = 120
|
|
from kubernetes import client, config
|
|
client.rest.logger.setLevel(logging.WARNING)
|
|
|
|
namespace = "milvus"
|
|
# service_name = "%s.%s.svc.cluster.local" % (helm_release_name, namespace)
|
|
config.load_kube_config()
|
|
v1 = client.CoreV1Api()
|
|
pod_name = None
|
|
# config_map_names = v1.list_namespaced_config_map(namespace, pretty='true')
|
|
# body = {"replicas": 0}
|
|
pods = v1.list_namespaced_pod(namespace)
|
|
for i in pods.items:
|
|
if i.metadata.name.find(helm_release_name) != -1 and i.metadata.name.find("mysql") == -1:
|
|
pod_name = i.metadata.name
|
|
break
|
|
# v1.patch_namespaced_config_map(config_map_name, namespace, body, pretty='true')
|
|
# status_res = v1.read_namespaced_service_status(helm_release_name, namespace, pretty='true')
|
|
# print(status_res)
|
|
if pod_name is not None:
|
|
try:
|
|
v1.delete_namespaced_pod(pod_name, namespace)
|
|
except Exception as e:
|
|
logging.error(str(e))
|
|
logging.error("Exception when calling CoreV1Api->delete_namespaced_pod")
|
|
res = False
|
|
return res
|
|
time.sleep(5)
|
|
# check if restart successfully
|
|
pods = v1.list_namespaced_pod(namespace)
|
|
for i in pods.items:
|
|
pod_name_tmp = i.metadata.name
|
|
if pod_name_tmp.find(helm_release_name) != -1:
|
|
logging.debug(pod_name_tmp)
|
|
start_time = time.time()
|
|
while time.time() - start_time > timeout:
|
|
status_res = v1.read_namespaced_pod_status(pod_name_tmp, namespace, pretty='true')
|
|
if status_res.status.phase == "Running":
|
|
break
|
|
time.sleep(1)
|
|
if time.time() - start_time > timeout:
|
|
logging.error("Restart pod: %s timeout" % pod_name_tmp)
|
|
res = False
|
|
return res
|
|
else:
|
|
logging.error("Pod: %s not found" % helm_release_name)
|
|
res = False
|
|
return res
|