milvus/internal/core/unittest/test_sealed.cpp

2336 lines
101 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <boost/format.hpp>
#include <optional>
#include <gtest/gtest.h>
#include "cachinglayer/Utils.h"
#include "common/Types.h"
#include "index/IndexFactory.h"
#include "knowhere/version.h"
#include "storage/RemoteChunkManagerSingleton.h"
#include "storage/Util.h"
#include "test_cachinglayer/cachinglayer_test_utils.h"
#include "test_utils/DataGen.h"
#include "test_utils/storage_test_utils.h"
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
using milvus::segcore::LoadIndexInfo;
const int64_t ROW_COUNT = 10 * 1000;
const int64_t BIAS = 4200;
using Param = std::string;
class SealedTest : public ::testing::TestWithParam<Param> {
public:
void
SetUp() override {
}
};
TEST(Sealed, without_predicate) {
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto float_fid = schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
for (int64_t i = 0; i < 1000 * dim; ++i) {
vec_col.push_back(0);
}
auto query_ptr = vec_col.data() + BIAS * dim;
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw =
CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
auto pre_result = SearchResultToJson(*sr);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
auto build_conf =
knowhere::Json{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "100"}};
auto search_conf = knowhere::Json{{knowhere::indexparam::NPROBE, 10}};
auto database = knowhere::GenDataSet(N, dim, vec_col.data() + 1000 * dim);
indexing->BuildWithDataset(database, build_conf);
auto vec_index = dynamic_cast<milvus::index::VectorIndex*>(indexing.get());
EXPECT_EQ(vec_index->Count(), N);
EXPECT_EQ(vec_index->GetDim(), dim);
auto query_dataset = knowhere::GenDataSet(num_queries, dim, query_ptr);
milvus::SearchInfo searchInfo;
searchInfo.topk_ = topK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
SearchResult result;
vec_index->Query(query_dataset, searchInfo, nullptr, result);
auto ref_result = SearchResultToJson(result);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index_params = GenIndexParams(indexing.get());
load_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar field
auto sealed_segment = CreateSealedWithFieldDataLoaded(schema, dataset);
sealed_segment->DropFieldData(fake_id);
sealed_segment->LoadIndex(load_info);
sr = sealed_segment->Search(plan.get(), ph_group.get(), timestamp);
auto post_result = SearchResultToJson(*sr);
std::cout << "ref_result" << std::endl;
std::cout << ref_result.dump(1) << std::endl;
std::cout << "post_result" << std::endl;
std::cout << post_result.dump(1);
// ASSERT_EQ(ref_result.dump(1), post_result.dump(1));
sr = sealed_segment->Search(plan.get(), ph_group.get(), 0);
EXPECT_EQ(sr->get_total_result_count(), 0);
sr = sealed_segment->Search(plan.get(), ph_group.get(), timestamp, 0, 100);
EXPECT_EQ(sr->get_total_result_count(), 0);
}
TEST(Sealed, without_search_ef_less_than_limit) {
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto float_fid = schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
round_decimal: 3
metric_type: "L2"
search_params: "{\"ef\": 10}"
>
placeholder_tag: "$0"
>)";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
auto query_ptr = vec_col.data() + BIAS * dim;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw =
CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_HNSW;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
auto build_conf =
knowhere::Json{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::indexparam::M, "16"},
{knowhere::indexparam::EF, "10"}};
auto database = knowhere::GenDataSet(N, dim, vec_col.data());
indexing->BuildWithDataset(database, build_conf);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index_params = GenIndexParams(indexing.get());
load_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar field
auto sealed_segment = CreateSealedWithFieldDataLoaded(schema, dataset);
sealed_segment->DropFieldData(fake_id);
sealed_segment->LoadIndex(load_info);
// Test that search fails when ef parameter is less than top-k
// HNSW index requires ef to be larger than k for proper search
bool exception_thrown = false;
try {
auto sr = sealed_segment->Search(plan.get(), ph_group.get(), timestamp);
FAIL() << "Expected exception for invalid ef parameter";
} catch (const std::exception& e) {
exception_thrown = true;
std::string error_msg = e.what();
ASSERT_TRUE(error_msg.find("ef(10) should be larger than k(100)") !=
std::string::npos)
<< "Unexpected error message: " << error_msg;
}
ASSERT_TRUE(exception_thrown) << "Expected exception was not thrown";
}
TEST(Sealed, with_predicate) {
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 101
data_type: Int64
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
int64_val: 4200
>
upper_value: <
int64_val: 4205
>
>
>
query_info: <
topk: 5
round_decimal: 6
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
auto query_ptr = vec_col.data() + BIAS * dim;
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw =
CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
auto build_conf =
knowhere::Json{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "100"}};
auto database = knowhere::GenDataSet(N, dim, vec_col.data());
indexing->BuildWithDataset(database, build_conf);
auto vec_index = dynamic_cast<index::VectorIndex*>(indexing.get());
EXPECT_EQ(vec_index->Count(), N);
EXPECT_EQ(vec_index->GetDim(), dim);
auto query_dataset = knowhere::GenDataSet(num_queries, dim, query_ptr);
auto search_conf =
knowhere::Json{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::indexparam::NPROBE, 10}};
milvus::SearchInfo searchInfo;
searchInfo.topk_ = topK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
SearchResult result;
vec_index->Query(query_dataset, searchInfo, nullptr, result);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index_params = GenIndexParams(indexing.get());
load_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar field
auto sealed_segment = CreateSealedWithFieldDataLoaded(schema, dataset);
sealed_segment->DropFieldData(fake_id);
sealed_segment->LoadIndex(load_info);
sr = sealed_segment->Search(plan.get(), ph_group.get(), timestamp);
for (int i = 0; i < num_queries; ++i) {
auto offset = i * topK;
ASSERT_EQ(sr->seg_offsets_[offset], BIAS + i);
ASSERT_EQ(sr->distances_[offset], 0.0);
}
}
TEST(Sealed, with_predicate_filter_all) {
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
// auto metric_type = MetricType::METRIC_L2;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 101
data_type: Int64
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
int64_val: 4200
>
upper_value: <
int64_val: 4199
>
>
>
query_info: <
topk: 5
round_decimal: 6
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
auto query_ptr = vec_col.data() + BIAS * dim;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw =
CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto ivf_indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
auto ivf_build_conf =
knowhere::Json{{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "100"},
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2}};
auto database = knowhere::GenDataSet(N, dim, vec_col.data());
ivf_indexing->BuildWithDataset(database, ivf_build_conf);
auto ivf_vec_index = dynamic_cast<index::VectorIndex*>(ivf_indexing.get());
EXPECT_EQ(ivf_vec_index->Count(), N);
EXPECT_EQ(ivf_vec_index->GetDim(), dim);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index_params = GenIndexParams(ivf_indexing.get());
load_info.cache_index =
CreateTestCacheIndex("test", std::move(ivf_indexing));
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar field
auto ivf_sealed_segment = CreateSealedWithFieldDataLoaded(schema, dataset);
ivf_sealed_segment->DropFieldData(fake_id);
ivf_sealed_segment->LoadIndex(load_info);
auto sr = ivf_sealed_segment->Search(plan.get(), ph_group.get(), timestamp);
EXPECT_EQ(sr->unity_topK_, 0);
EXPECT_EQ(sr->get_total_result_count(), 0);
auto hnsw_conf =
knowhere::Json{{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::HNSW_M, "16"},
{knowhere::indexparam::EFCONSTRUCTION, "200"},
{knowhere::indexparam::EF, "200"},
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2}};
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_HNSW;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto hnsw_indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
hnsw_indexing->BuildWithDataset(database, hnsw_conf);
auto hnsw_vec_index =
dynamic_cast<index::VectorIndex*>(hnsw_indexing.get());
EXPECT_EQ(hnsw_vec_index->Count(), N);
EXPECT_EQ(hnsw_vec_index->GetDim(), dim);
LoadIndexInfo hnsw_load_info;
hnsw_load_info.field_id = fake_id.get();
hnsw_load_info.index_params = GenIndexParams(hnsw_indexing.get());
hnsw_load_info.cache_index =
CreateTestCacheIndex("test", std::move(hnsw_indexing));
hnsw_load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar field
auto hnsw_sealed_segment = CreateSealedWithFieldDataLoaded(schema, dataset);
hnsw_sealed_segment->DropFieldData(fake_id);
hnsw_sealed_segment->LoadIndex(hnsw_load_info);
auto sr2 =
hnsw_sealed_segment->Search(plan.get(), ph_group.get(), timestamp);
EXPECT_EQ(sr2->unity_topK_, 0);
EXPECT_EQ(sr2->get_total_result_count(), 0);
}
TEST(Sealed, LoadFieldData) {
auto dim = 16;
auto topK = 5;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
auto str_id = schema->AddDebugField("str", DataType::VARCHAR);
schema->AddDebugField("int8", DataType::INT8);
schema->AddDebugField("int16", DataType::INT16);
schema->AddDebugField("float", DataType::FLOAT);
schema->AddDebugField("json", DataType::JSON);
schema->AddDebugField("array", DataType::ARRAY, DataType::INT64);
schema->set_primary_field_id(counter_id);
auto int8_nullable_id =
schema->AddDebugField("int8_null", DataType::INT8, true);
auto int16_nullable_id =
schema->AddDebugField("int16_null", DataType::INT16, true);
auto int32_nullable_id =
schema->AddDebugField("int32_null", DataType::INT32, true);
auto int64_nullable_id =
schema->AddDebugField("int64_null", DataType::INT64, true);
auto double_nullable_id =
schema->AddDebugField("double_null", DataType::DOUBLE, true);
auto str_nullable_id =
schema->AddDebugField("str_null", DataType::VARCHAR, true);
auto float_nullable_id =
schema->AddDebugField("float_null", DataType::FLOAT, true);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(
N, dim, fakevec.data(), knowhere::IndexEnum::INDEX_FAISS_IVFFLAT);
//
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 102
data_type: Double
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
Timestamp timestamp = 1000000;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
segment = CreateSealedWithFieldDataLoaded(schema, dataset);
segment->Search(plan.get(), ph_group.get(), timestamp);
segment->DropFieldData(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.index_params = GenIndexParams(indexing.get());
vec_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment->LoadIndex(vec_info);
ASSERT_EQ(segment->num_chunk(fakevec_id), 1);
ASSERT_EQ(segment->num_chunk_index(double_id), 0);
ASSERT_EQ(segment->num_chunk_index(str_id), 0);
auto chunk_span1 = segment->chunk_data<int64_t>(counter_id, 0);
auto chunk_span2 = segment->chunk_data<double>(double_id, 0);
auto chunk_span3 =
segment->get_batch_views<std::string_view>(str_id, 0, 0, N);
auto chunk_span4 = segment->chunk_data<int8_t>(int8_nullable_id, 0);
auto chunk_span5 = segment->chunk_data<int16_t>(int16_nullable_id, 0);
auto chunk_span6 = segment->chunk_data<int32_t>(int32_nullable_id, 0);
auto chunk_span7 = segment->chunk_data<int64_t>(int64_nullable_id, 0);
auto chunk_span8 = segment->chunk_data<double>(double_nullable_id, 0);
auto chunk_span9 =
segment->get_batch_views<std::string_view>(str_nullable_id, 0, 0, N);
auto ref1 = dataset.get_col<int64_t>(counter_id);
auto ref2 = dataset.get_col<double>(double_id);
auto ref3 = dataset.get_col(str_id)->scalars().string_data().data();
auto ref4 = dataset.get_col<int8_t>(int8_nullable_id);
auto ref5 = dataset.get_col<int16_t>(int16_nullable_id);
auto ref6 = dataset.get_col<int32_t>(int32_nullable_id);
auto ref7 = dataset.get_col<int64_t>(int64_nullable_id);
auto ref8 = dataset.get_col<double>(double_nullable_id);
auto ref9 =
dataset.get_col(str_nullable_id)->scalars().string_data().data();
auto valid4 = dataset.get_col_valid(int8_nullable_id);
auto valid5 = dataset.get_col_valid(int16_nullable_id);
auto valid6 = dataset.get_col_valid(int32_nullable_id);
auto valid7 = dataset.get_col_valid(int64_nullable_id);
auto valid8 = dataset.get_col_valid(double_nullable_id);
auto valid9 = dataset.get_col_valid(str_nullable_id);
ASSERT_EQ(chunk_span1.get().valid_data(), nullptr);
ASSERT_EQ(chunk_span2.get().valid_data(), nullptr);
ASSERT_EQ(chunk_span3.get().second.size(), 0);
for (int i = 0; i < N; ++i) {
if (chunk_span1.get().valid_data() == nullptr ||
chunk_span1.get().valid_data()[i]) {
ASSERT_EQ(chunk_span1.get().data()[i], ref1[i]);
}
if (chunk_span2.get().valid_data() == nullptr ||
chunk_span2.get().valid_data()[i]) {
ASSERT_EQ(chunk_span2.get().data()[i], ref2[i]);
}
if (chunk_span3.get().second.size() == 0 ||
chunk_span3.get().second[i]) {
ASSERT_EQ(chunk_span3.get().first[i], ref3[i]);
}
if (chunk_span4.get().valid_data() == nullptr ||
chunk_span4.get().valid_data()[i]) {
ASSERT_EQ(chunk_span4.get().data()[i], ref4[i]);
}
if (chunk_span5.get().valid_data() == nullptr ||
chunk_span5.get().valid_data()[i]) {
ASSERT_EQ(chunk_span5.get().data()[i], ref5[i]);
}
if (chunk_span6.get().valid_data() == nullptr ||
chunk_span6.get().valid_data()[i]) {
ASSERT_EQ(chunk_span6.get().data()[i], ref6[i]);
}
if (chunk_span7.get().valid_data() == nullptr ||
chunk_span7.get().valid_data()[i]) {
ASSERT_EQ(chunk_span7.get().data()[i], ref7[i]);
}
if (chunk_span8.get().valid_data() == nullptr ||
chunk_span8.get().valid_data()[i]) {
ASSERT_EQ(chunk_span8.get().data()[i], ref8[i]);
}
if (chunk_span9.get().second.size() == 0 ||
chunk_span9.get().second[i]) {
ASSERT_EQ(chunk_span9.get().first[i], ref9[i]);
}
ASSERT_EQ(chunk_span4.get().valid_data()[i], valid4[i]);
ASSERT_EQ(chunk_span5.get().valid_data()[i], valid5[i]);
ASSERT_EQ(chunk_span6.get().valid_data()[i], valid6[i]);
ASSERT_EQ(chunk_span7.get().valid_data()[i], valid7[i]);
ASSERT_EQ(chunk_span8.get().valid_data()[i], valid8[i]);
ASSERT_EQ(chunk_span9.get().second[i], valid9[i]);
}
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
auto json = SearchResultToJson(*sr);
std::cout << json.dump(1);
segment->DropIndex(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
}
TEST(Sealed, ClearData) {
auto dim = 16;
auto topK = 5;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
auto str_id = schema->AddDebugField("str", DataType::VARCHAR);
schema->AddDebugField("int8", DataType::INT8);
schema->AddDebugField("int16", DataType::INT16);
schema->AddDebugField("float", DataType::FLOAT);
schema->AddDebugField("json", DataType::JSON);
schema->AddDebugField("array", DataType::ARRAY, DataType::INT64);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(
N, dim, fakevec.data(), knowhere::IndexEnum::INDEX_FAISS_IVFFLAT);
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 102
data_type: Double
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
Timestamp timestamp = 1000000;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
segment = CreateSealedWithFieldDataLoaded(schema, dataset);
segment->Search(plan.get(), ph_group.get(), timestamp);
segment->DropFieldData(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.index_params = GenIndexParams(indexing.get());
vec_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment->LoadIndex(vec_info);
ASSERT_EQ(segment->num_chunk(fakevec_id), 1);
ASSERT_EQ(segment->num_chunk_index(double_id), 0);
ASSERT_EQ(segment->num_chunk_index(str_id), 0);
auto chunk_span1 = segment->chunk_data<int64_t>(counter_id, 0);
auto chunk_span2 = segment->chunk_data<double>(double_id, 0);
auto chunk_span3 =
segment->get_batch_views<std::string_view>(str_id, 0, 0, N);
auto ref1 = dataset.get_col<int64_t>(counter_id);
auto ref2 = dataset.get_col<double>(double_id);
auto ref3 = dataset.get_col(str_id)->scalars().string_data().data();
ASSERT_EQ(chunk_span3.get().second.size(), 0);
for (int i = 0; i < N; ++i) {
ASSERT_EQ(chunk_span1.get()[i], ref1[i]);
ASSERT_EQ(chunk_span2.get()[i], ref2[i]);
ASSERT_EQ(chunk_span3.get().first[i], ref3[i]);
}
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
auto json = SearchResultToJson(*sr);
std::cout << json.dump(1);
auto sealed_segment = (ChunkedSegmentSealedImpl*)segment.get();
sealed_segment->ClearData();
ASSERT_EQ(sealed_segment->get_row_count(), 0);
ASSERT_EQ(sealed_segment->get_real_count(), 0);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
}
TEST(Sealed, LoadFieldDataMmap) {
auto dim = 16;
auto topK = 5;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
auto str_id = schema->AddDebugField("str", DataType::VARCHAR);
schema->AddDebugField("int8", DataType::INT8);
schema->AddDebugField("int16", DataType::INT16);
schema->AddDebugField("float", DataType::FLOAT);
schema->AddDebugField("json", DataType::JSON);
schema->AddDebugField("array", DataType::ARRAY, DataType::INT64);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(
N, dim, fakevec.data(), knowhere::IndexEnum::INDEX_FAISS_IVFFLAT);
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 102
data_type: Double
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
Timestamp timestamp = 1000000;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
segment = CreateSealedWithFieldDataLoaded(schema, dataset, true);
segment->Search(plan.get(), ph_group.get(), timestamp);
segment->DropFieldData(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.index_params = GenIndexParams(indexing.get());
vec_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment->LoadIndex(vec_info);
ASSERT_EQ(segment->num_chunk(fakevec_id), 1);
ASSERT_EQ(segment->num_chunk_index(double_id), 0);
ASSERT_EQ(segment->num_chunk_index(str_id), 0);
auto chunk_span1 = segment->chunk_data<int64_t>(counter_id, 0);
auto chunk_span2 = segment->chunk_data<double>(double_id, 0);
auto chunk_span3 =
segment->get_batch_views<std::string_view>(str_id, 0, 0, N);
auto ref1 = dataset.get_col<int64_t>(counter_id);
auto ref2 = dataset.get_col<double>(double_id);
auto ref3 = dataset.get_col(str_id)->scalars().string_data().data();
ASSERT_EQ(chunk_span3.get().second.size(), 0);
for (int i = 0; i < N; ++i) {
ASSERT_EQ(chunk_span1.get()[i], ref1[i]);
ASSERT_EQ(chunk_span2.get()[i], ref2[i]);
ASSERT_EQ(chunk_span3.get().first[i], ref3[i]);
}
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
auto json = SearchResultToJson(*sr);
std::cout << json.dump(1);
segment->DropIndex(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
}
TEST(Sealed, LoadPkScalarIndex) {
size_t N = ROW_COUNT;
auto schema = std::make_shared<Schema>();
auto pk_id = schema->AddDebugField("counter", DataType::INT64);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
schema->set_primary_field_id(pk_id);
auto dataset = DataGen(schema, N);
auto segment = CreateSealedWithFieldDataLoaded(schema, dataset);
LoadIndexInfo pk_index;
pk_index.field_id = pk_id.get();
pk_index.field_type = DataType::INT64;
pk_index.index_params["index_type"] = "sort";
auto pk_data = dataset.get_col<int64_t>(pk_id);
auto index = GenScalarIndexing<int64_t>(N, pk_data.data());
pk_index.index_params = GenIndexParams(index.get());
pk_index.cache_index = CreateTestCacheIndex("test", std::move(index));
segment->LoadIndex(pk_index);
}
TEST(Sealed, LoadScalarIndex) {
auto dim = 16;
size_t N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(
N, dim, fakevec.data(), knowhere::IndexEnum::INDEX_FAISS_IVFFLAT);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 102
data_type: Double
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
Timestamp timestamp = 1000000;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto segment = CreateSealedWithFieldDataLoaded(
schema,
dataset,
false,
GetExcludedFieldIds(schema, {{0, 1, counter_id.get()}}));
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.field_type = DataType::VECTOR_FLOAT;
vec_info.index_params = GenIndexParams(indexing.get());
vec_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment->LoadIndex(vec_info);
LoadIndexInfo counter_index;
counter_index.field_id = counter_id.get();
counter_index.field_type = DataType::INT64;
counter_index.index_params["index_type"] = "sort";
auto counter_data = dataset.get_col<int64_t>(counter_id);
auto index = GenScalarIndexing<int64_t>(N, counter_data.data());
counter_index.index_params = GenIndexParams(index.get());
counter_index.cache_index = CreateTestCacheIndex("test", std::move(index));
segment->LoadIndex(counter_index);
LoadIndexInfo double_index;
double_index.field_id = double_id.get();
double_index.field_type = DataType::DOUBLE;
double_index.index_params["index_type"] = "sort";
auto double_data = dataset.get_col<double>(double_id);
auto temp1 = GenScalarIndexing<double>(N, double_data.data());
double_index.index_params = GenIndexParams(temp1.get());
double_index.cache_index = CreateTestCacheIndex("test", std::move(temp1));
segment->LoadIndex(double_index);
LoadIndexInfo nothing_index;
nothing_index.field_id = nothing_id.get();
nothing_index.field_type = DataType::INT32;
nothing_index.index_params["index_type"] = "sort";
auto nothing_data = dataset.get_col<int32_t>(nothing_id);
auto temp2 = GenScalarIndexing<int32_t>(N, nothing_data.data());
nothing_index.index_params = GenIndexParams(temp2.get());
nothing_index.cache_index = CreateTestCacheIndex("test", std::move(temp2));
segment->LoadIndex(nothing_index);
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp, 0, 100000);
auto json = SearchResultToJson(*sr);
std::cout << json.dump(1);
}
TEST(Sealed, Delete) {
auto dim = 16;
auto topK = 5;
auto N = 10;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 102
data_type: Double
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
Timestamp timestamp = 1000000;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
segment = CreateSealedWithFieldDataLoaded(schema, dataset);
int64_t row_count = 5;
std::vector<idx_t> pks{1, 2, 3, 4, 5};
auto ids = std::make_unique<IdArray>();
ids->mutable_int_id()->mutable_data()->Add(pks.begin(), pks.end());
std::vector<Timestamp> timestamps{10, 10, 10, 10, 10};
LoadDeletedRecordInfo info = {timestamps.data(), ids.get(), row_count};
segment->LoadDeletedRecord(info);
BitsetType bitset(N, false);
auto bitset_view = BitsetTypeView(bitset);
segment->mask_with_delete(bitset_view, 10, 11);
ASSERT_EQ(bitset.count(), pks.size());
int64_t new_count = 3;
std::vector<idx_t> new_pks{6, 7, 8};
auto new_ids = std::make_unique<IdArray>();
new_ids->mutable_int_id()->mutable_data()->Add(new_pks.begin(),
new_pks.end());
std::vector<idx_t> new_timestamps{10, 10, 10};
segment->Delete(new_count,
new_ids.get(),
reinterpret_cast<const Timestamp*>(new_timestamps.data()));
}
TEST(Sealed, OverlapDelete) {
auto dim = 16;
auto topK = 5;
auto N = 10;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 102
data_type: Double
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
Timestamp timestamp = 1000000;
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), timestamp));
segment = CreateSealedWithFieldDataLoaded(schema, dataset);
int64_t row_count = 5;
std::vector<idx_t> pks{1, 2, 3, 4, 5};
auto ids = std::make_unique<IdArray>();
ids->mutable_int_id()->mutable_data()->Add(pks.begin(), pks.end());
std::vector<Timestamp> timestamps{10, 10, 10, 10, 10};
LoadDeletedRecordInfo info = {timestamps.data(), ids.get(), row_count};
segment->LoadDeletedRecord(info);
ASSERT_EQ(segment->get_deleted_count(), pks.size())
<< "deleted_count=" << segment->get_deleted_count()
<< " pks_count=" << pks.size() << std::endl;
// Load overlapping delete records
row_count += 3;
pks.insert(pks.end(), {6, 7, 8});
auto new_ids = std::make_unique<IdArray>();
new_ids->mutable_int_id()->mutable_data()->Add(pks.begin(), pks.end());
timestamps.insert(timestamps.end(), {11, 11, 11});
LoadDeletedRecordInfo overlap_info = {
timestamps.data(), new_ids.get(), row_count};
segment->LoadDeletedRecord(overlap_info);
// NOTE: need to change delete timestamp, so not to hit the cache
ASSERT_EQ(segment->get_deleted_count(), pks.size())
<< "deleted_count=" << segment->get_deleted_count()
<< " pks_count=" << pks.size() << std::endl;
BitsetType bitset(N, false);
auto bitset_view = BitsetTypeView(bitset);
segment->mask_with_delete(bitset_view, 10, 12);
ASSERT_EQ(bitset.count(), pks.size())
<< "bitset_count=" << bitset.count() << " pks_count=" << pks.size()
<< std::endl;
}
auto
GenMaxFloatVecs(int N, int dim) {
std::vector<float> vecs;
for (int i = 0; i < N; i++) {
for (int j = 0; j < dim; j++) {
vecs.push_back(std::numeric_limits<float>::max());
}
}
return vecs;
}
auto
GenRandomFloatVecs(int N, int dim) {
std::vector<float> vecs;
srand(time(NULL));
for (int i = 0; i < N; i++) {
for (int j = 0; j < dim; j++) {
vecs.push_back(static_cast<float>(rand()) /
static_cast<float>(RAND_MAX));
}
}
return vecs;
}
auto
GenQueryVecs(int N, int dim) {
std::vector<float> vecs;
for (int i = 0; i < N; i++) {
for (int j = 0; j < dim; j++) {
vecs.push_back(1);
}
}
return vecs;
}
TEST(Sealed, BF) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metric_type = "L2";
auto fake_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
size_t N = 100000;
auto dataset = DataGen(schema, N);
std::cout << fake_id.get() << std::endl;
auto segment = CreateSealedWithFieldDataLoaded(
schema, dataset, false, {fake_id.get()});
auto vec_data = GenRandomFloatVecs(N, dim);
auto field_data =
storage::CreateFieldData(DataType::VECTOR_FLOAT, false, dim);
field_data->FillFieldData(vec_data.data(), N);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
auto load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
fake_id.get(),
{field_data},
cm);
segment->LoadFieldData(load_info);
auto topK = 1;
auto fmt = boost::format(R"(vector_anns: <
field_id: 100
query_info: <
topk: %1%
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0">
output_field_ids: 101)") %
topK;
auto serialized_expr_plan = fmt.str();
auto binary_plan =
translate_text_plan_to_binary_plan(serialized_expr_plan.data());
auto plan =
CreateSearchPlanByExpr(schema, binary_plan.data(), binary_plan.size());
auto num_queries = 10;
auto query = GenQueryVecs(num_queries, dim);
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, query);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto result = segment->Search(plan.get(), ph_group.get(), MAX_TIMESTAMP);
auto ves = SearchResultToVector(*result);
// first: offset, second: distance
EXPECT_GE(ves[0].first, 0);
EXPECT_LE(ves[0].first, N);
EXPECT_LE(ves[0].second, dim);
}
TEST(Sealed, BF_Overflow) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metric_type = "L2";
auto fake_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
size_t N = 10;
auto dataset = DataGen(schema, N);
auto segment = CreateSealedWithFieldDataLoaded(
schema,
dataset,
false,
GetExcludedFieldIds(schema, {0, 1, i64_fid.get()}));
auto vec_data = GenMaxFloatVecs(N, dim);
auto field_data =
storage::CreateFieldData(DataType::VECTOR_FLOAT, false, dim);
field_data->FillFieldData(vec_data.data(), N);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
auto vec_load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
fake_id.get(),
{field_data},
cm);
segment->LoadFieldData(vec_load_info);
auto topK = 1;
auto fmt = boost::format(R"(vector_anns: <
field_id: 100
query_info: <
topk: %1%
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0">
output_field_ids: 101)") %
topK;
auto serialized_expr_plan = fmt.str();
auto binary_plan =
translate_text_plan_to_binary_plan(serialized_expr_plan.data());
auto plan =
CreateSearchPlanByExpr(schema, binary_plan.data(), binary_plan.size());
auto num_queries = 10;
auto query = GenQueryVecs(num_queries, dim);
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, query);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto result = segment->Search(plan.get(), ph_group.get(), MAX_TIMESTAMP);
auto ves = SearchResultToVector(*result);
for (int i = 0; i < num_queries; ++i) {
EXPECT_EQ(ves[i].first, -1);
}
}
TEST(Sealed, DeleteCount) {
{
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
// empty segment
size_t N = 10;
auto dataset = DataGen(schema, N);
auto segment = CreateSealedWithFieldDataLoaded(schema, dataset);
segment->get_insert_record().seal_pks();
int64_t c = 10;
ASSERT_EQ(segment->get_deleted_count(), 0);
Timestamp begin_ts = 100;
auto tss = GenTss(c, begin_ts);
auto pks = GenPKs(c, N);
auto status = segment->Delete(c, pks.get(), tss.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(segment->get_deleted_count(), 0);
}
{
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
int64_t c = 10;
auto dataset = DataGen(schema, c);
auto pks = dataset.get_col<int64_t>(pk);
auto segment = CreateSealedWithFieldDataLoaded(schema, dataset);
auto iter = std::max_element(pks.begin(), pks.end());
auto delete_pks = GenPKs(c, *iter);
Timestamp begin_ts = 100;
auto tss = GenTss(c, begin_ts);
auto status = segment->Delete(c, delete_pks.get(), tss.data());
ASSERT_TRUE(status.ok());
// 9 of element should be filtered.
auto cnt = segment->get_deleted_count();
ASSERT_EQ(cnt, 1);
}
}
TEST(Sealed, RealCount) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
auto segment = CreateSealedSegment(schema);
ASSERT_EQ(0, segment->get_real_count());
int64_t c = 10;
auto dataset = DataGen(schema, c);
auto pks = dataset.get_col<int64_t>(pk);
segment = CreateSealedWithFieldDataLoaded(schema, dataset);
// no delete.
ASSERT_EQ(c, segment->get_real_count());
// delete half.
auto half = c / 2;
auto del_ids1 = GenPKs(pks.begin(), pks.begin() + half);
auto del_tss1 = GenTss(half, c);
auto status = segment->Delete(half, del_ids1.get(), del_tss1.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(c - half, segment->get_real_count());
// delete duplicate.
auto del_tss2 = GenTss(half, c + half);
status = segment->Delete(half, del_ids1.get(), del_tss2.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(c - half, segment->get_real_count());
// delete all.
auto del_ids3 = GenPKs(pks.begin(), pks.end());
auto del_tss3 = GenTss(c, c + half * 2);
status = segment->Delete(c, del_ids3.get(), del_tss3.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(0, segment->get_real_count());
}
TEST(Sealed, GetVector) {
auto dim = 16;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
schema->AddDebugField("int8", DataType::INT8);
schema->AddDebugField("int16", DataType::INT16);
schema->AddDebugField("float", DataType::FLOAT);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(
N, dim, fakevec.data(), knowhere::IndexEnum::INDEX_FAISS_IVFFLAT);
auto segment_sealed = CreateSealedSegment(schema);
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.index_params = GenIndexParams(indexing.get());
vec_info.cache_index = CreateTestCacheIndex("test", std::move(indexing));
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment_sealed->LoadIndex(vec_info);
auto segment =
dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
auto has = segment->HasRawData(vec_info.field_id);
EXPECT_TRUE(has);
auto ids_ds = GenRandomIds(N);
auto result = segment->get_vector(fakevec_id, ids_ds->GetIds(), N);
auto vector = result.get()->mutable_vectors()->float_vector().data();
EXPECT_TRUE(vector.size() == fakevec.size());
for (size_t i = 0; i < N; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < dim; ++j) {
EXPECT_TRUE(vector[i * dim + j] == fakevec[id * dim + j]);
}
}
}
TEST(Sealed, LoadArrayFieldData) {
auto dim = 16;
auto topK = 5;
auto N = 10;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto array_id =
schema->AddDebugField("array", DataType::ARRAY, DataType::INT64);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns:<
field_id:100
predicates:<
json_contains_expr:<
column_info:<
field_id:102
data_type:Array
element_type:Int64
>
elements:<int64_val:1 >
op:Contains
elements_same_type:true
>
>
query_info:<
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
> placeholder_tag:"$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
segment = CreateSealedWithFieldDataLoaded(schema, dataset);
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto ids_ds = GenRandomIds(N);
auto s = dynamic_cast<ChunkedSegmentSealedImpl*>(segment.get());
auto int64_result = s->bulk_subscript(array_id, ids_ds->GetIds(), N);
auto result_count = int64_result->scalars().array_data().data().size();
ASSERT_EQ(result_count, N);
}
TEST(Sealed, LoadArrayFieldDataWithMMap) {
auto dim = 16;
auto topK = 5;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto array_id =
schema->AddDebugField("array", DataType::ARRAY, DataType::INT64);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto segment = CreateSealedSegment(schema);
const char* raw_plan = R"(vector_anns:<
field_id:100
predicates:<
json_contains_expr:<
column_info:<
field_id:102
data_type:Array
element_type:Int64
>
elements:<int64_val:1 >
op:Contains
elements_same_type:true
>
>
query_info:<
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
> placeholder_tag:"$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
segment = CreateSealedWithFieldDataLoaded(schema, dataset, true);
segment->Search(plan.get(), ph_group.get(), 1L << 63);
}
TEST(Sealed, SkipIndexSkipUnaryRange) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metrics_type = "L2";
auto fake_vec_fid = schema->AddDebugField(
"fakeVec", DataType::VECTOR_FLOAT, dim, metrics_type);
auto pk_fid = schema->AddDebugField("pk", DataType::INT64);
auto i32_fid = schema->AddDebugField("int32_field", DataType::INT32);
auto i16_fid = schema->AddDebugField("int16_field", DataType::INT16);
auto i8_fid = schema->AddDebugField("int8_field", DataType::INT8);
auto float_fid = schema->AddDebugField("float_field", DataType::FLOAT);
auto double_fid = schema->AddDebugField("double_field", DataType::DOUBLE);
size_t N = 10;
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
std::cout << "pk_fid:" << pk_fid.get() << std::endl;
//test for int64
std::vector<int64_t> pks = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto pk_field_data =
storage::CreateFieldData(DataType::INT64, false, 1, 10);
pk_field_data->FillFieldData(pks.data(), N);
auto load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
pk_fid.get(),
{pk_field_data},
cm);
segment->LoadFieldData(load_info);
auto& skip_index = segment->GetSkipIndex();
bool equal_5_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::Equal, 5);
bool equal_12_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::Equal, 12);
bool equal_10_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::Equal, 10);
ASSERT_FALSE(equal_5_skip);
ASSERT_TRUE(equal_12_skip);
ASSERT_FALSE(equal_10_skip);
bool less_than_1_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::LessThan, 1);
bool less_than_5_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::LessThan, 5);
ASSERT_TRUE(less_than_1_skip);
ASSERT_FALSE(less_than_5_skip);
bool less_equal_than_1_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::LessEqual, 1);
bool less_equal_than_15_skip =
skip_index.CanSkipUnaryRange<int64_t>(pk_fid, 0, OpType::LessThan, 15);
ASSERT_FALSE(less_equal_than_1_skip);
ASSERT_FALSE(less_equal_than_15_skip);
bool greater_than_10_skip = skip_index.CanSkipUnaryRange<int64_t>(
pk_fid, 0, OpType::GreaterThan, 10);
bool greater_than_5_skip = skip_index.CanSkipUnaryRange<int64_t>(
pk_fid, 0, OpType::GreaterThan, 5);
ASSERT_TRUE(greater_than_10_skip);
ASSERT_FALSE(greater_than_5_skip);
bool greater_equal_than_10_skip = skip_index.CanSkipUnaryRange<int64_t>(
pk_fid, 0, OpType::GreaterEqual, 10);
bool greater_equal_than_5_skip = skip_index.CanSkipUnaryRange<int64_t>(
pk_fid, 0, OpType::GreaterEqual, 5);
ASSERT_FALSE(greater_equal_than_10_skip);
ASSERT_FALSE(greater_equal_than_5_skip);
//test for int32
std::vector<int32_t> int32s = {2, 2, 3, 4, 5, 6, 7, 8, 9, 12};
auto int32_field_data =
storage::CreateFieldData(DataType::INT32, false, 1, 10);
int32_field_data->FillFieldData(int32s.data(), N);
load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
i32_fid.get(),
{int32_field_data},
cm);
segment->LoadFieldData(load_info);
less_than_1_skip =
skip_index.CanSkipUnaryRange<int32_t>(i32_fid, 0, OpType::LessThan, 1);
ASSERT_TRUE(less_than_1_skip);
//test for int16
std::vector<int16_t> int16s = {2, 2, 3, 4, 5, 6, 7, 8, 9, 12};
auto int16_field_data =
storage::CreateFieldData(DataType::INT16, false, 1, 10);
int16_field_data->FillFieldData(int16s.data(), N);
load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
i16_fid.get(),
{int16_field_data},
cm);
segment->LoadFieldData(load_info);
bool less_than_12_skip =
skip_index.CanSkipUnaryRange<int16_t>(i16_fid, 0, OpType::LessThan, 12);
ASSERT_FALSE(less_than_12_skip);
//test for int8
std::vector<int8_t> int8s = {2, 2, 3, 4, 5, 6, 7, 8, 9, 12};
auto int8_field_data =
storage::CreateFieldData(DataType::INT8, false, 1, 10);
int8_field_data->FillFieldData(int8s.data(), N);
load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
i8_fid.get(),
{int8_field_data},
cm);
segment->LoadFieldData(load_info);
bool greater_than_12_skip = skip_index.CanSkipUnaryRange<int8_t>(
i8_fid, 0, OpType::GreaterThan, 12);
ASSERT_TRUE(greater_than_12_skip);
// test for float
std::vector<float> floats = {
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
auto float_field_data =
storage::CreateFieldData(DataType::FLOAT, false, 1, 10);
float_field_data->FillFieldData(floats.data(), N);
load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
float_fid.get(),
{float_field_data},
cm);
segment->LoadFieldData(load_info);
greater_than_10_skip = skip_index.CanSkipUnaryRange<float>(
float_fid, 0, OpType::GreaterThan, 10.0);
ASSERT_TRUE(greater_than_10_skip);
// test for double
std::vector<double> doubles = {
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
auto double_field_data =
storage::CreateFieldData(DataType::DOUBLE, false, 1, 10);
double_field_data->FillFieldData(doubles.data(), N);
load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
double_fid.get(),
{double_field_data},
cm);
segment->LoadFieldData(load_info);
greater_than_10_skip = skip_index.CanSkipUnaryRange<double>(
double_fid, 0, OpType::GreaterThan, 10.0);
ASSERT_TRUE(greater_than_10_skip);
}
TEST(Sealed, SkipIndexSkipBinaryRange) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metrics_type = "L2";
auto fake_vec_fid = schema->AddDebugField(
"fakeVec", DataType::VECTOR_FLOAT, dim, metrics_type);
auto pk_fid = schema->AddDebugField("pk", DataType::INT64);
size_t N = 10;
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
std::cout << "pk_fid:" << pk_fid.get() << std::endl;
//test for int64
std::vector<int64_t> pks = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto pk_field_data =
storage::CreateFieldData(DataType::INT64, false, 1, 10);
pk_field_data->FillFieldData(pks.data(), N);
auto load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
pk_fid.get(),
{pk_field_data},
cm);
segment->LoadFieldData(load_info);
auto& skip_index = segment->GetSkipIndex();
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(pk_fid, 0, -3, 1, true, true));
ASSERT_TRUE(
skip_index.CanSkipBinaryRange<int64_t>(pk_fid, 0, -3, 1, true, false));
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(pk_fid, 0, 7, 9, true, true));
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(pk_fid, 0, 8, 12, true, false));
ASSERT_TRUE(
skip_index.CanSkipBinaryRange<int64_t>(pk_fid, 0, 10, 12, false, true));
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(pk_fid, 0, 10, 12, true, true));
}
TEST(Sealed, SkipIndexSkipUnaryRangeNullable) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metrics_type = "L2";
auto fake_vec_fid = schema->AddDebugField(
"fakeVec", DataType::VECTOR_FLOAT, dim, metrics_type);
auto i64_fid = schema->AddDebugField("int64_field", DataType::INT64, true);
auto dataset = DataGen(schema, 5);
auto segment = CreateSealedSegment(schema);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
//test for int64
std::vector<int64_t> int64s = {1, 2, 3, 4, 5};
std::array<uint8_t, 1> valid_data = {0x03};
auto int64s_field_data =
storage::CreateFieldData(DataType::INT64, true, 1, 5);
int64s_field_data->FillFieldData(int64s.data(), valid_data.data(), 5, 0);
auto load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
i64_fid.get(),
{int64s_field_data},
cm);
segment->LoadFieldData(load_info);
auto& skip_index = segment->GetSkipIndex();
bool equal_5_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::Equal, 5);
bool equal_4_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::Equal, 4);
bool equal_2_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::Equal, 2);
bool equal_1_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::Equal, 1);
ASSERT_TRUE(equal_5_skip);
ASSERT_TRUE(equal_4_skip);
ASSERT_FALSE(equal_2_skip);
ASSERT_FALSE(equal_1_skip);
bool less_than_1_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::LessThan, 1);
bool less_than_5_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::LessThan, 5);
ASSERT_TRUE(less_than_1_skip);
ASSERT_FALSE(less_than_5_skip);
bool less_equal_than_1_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::LessEqual, 1);
bool less_equal_than_15_skip =
skip_index.CanSkipUnaryRange<int64_t>(i64_fid, 0, OpType::LessThan, 15);
ASSERT_FALSE(less_equal_than_1_skip);
ASSERT_FALSE(less_equal_than_15_skip);
bool greater_than_10_skip = skip_index.CanSkipUnaryRange<int64_t>(
i64_fid, 0, OpType::GreaterThan, 10);
bool greater_than_5_skip = skip_index.CanSkipUnaryRange<int64_t>(
i64_fid, 0, OpType::GreaterThan, 5);
bool greater_than_2_skip = skip_index.CanSkipUnaryRange<int64_t>(
i64_fid, 0, OpType::GreaterThan, 2);
bool greater_than_1_skip = skip_index.CanSkipUnaryRange<int64_t>(
i64_fid, 0, OpType::GreaterThan, 1);
ASSERT_TRUE(greater_than_10_skip);
ASSERT_TRUE(greater_than_5_skip);
ASSERT_TRUE(greater_than_2_skip);
ASSERT_FALSE(greater_than_1_skip);
bool greater_equal_than_3_skip = skip_index.CanSkipUnaryRange<int64_t>(
i64_fid, 0, OpType::GreaterEqual, 3);
bool greater_equal_than_2_skip = skip_index.CanSkipUnaryRange<int64_t>(
i64_fid, 0, OpType::GreaterEqual, 2);
ASSERT_TRUE(greater_equal_than_3_skip);
ASSERT_FALSE(greater_equal_than_2_skip);
}
TEST(Sealed, SkipIndexSkipBinaryRangeNullable) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metrics_type = "L2";
auto fake_vec_fid = schema->AddDebugField(
"fakeVec", DataType::VECTOR_FLOAT, dim, metrics_type);
auto i64_fid = schema->AddDebugField("int64_field", DataType::INT64, true);
auto dataset = DataGen(schema, 5);
auto segment = CreateSealedSegment(schema);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
//test for int64
std::vector<int64_t> int64s = {1, 2, 3, 4, 5};
std::array<uint8_t, 1> valid_data = {0x03};
auto int64s_field_data =
storage::CreateFieldData(DataType::INT64, true, 1, 5);
int64s_field_data->FillFieldData(int64s.data(), valid_data.data(), 5, 0);
auto load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
i64_fid.get(),
{int64s_field_data},
cm);
segment->LoadFieldData(load_info);
auto& skip_index = segment->GetSkipIndex();
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(i64_fid, 0, -3, 1, true, true));
ASSERT_TRUE(
skip_index.CanSkipBinaryRange<int64_t>(i64_fid, 0, -3, 1, true, false));
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(i64_fid, 0, 1, 3, true, true));
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(i64_fid, 0, 1, 2, true, false));
ASSERT_TRUE(
skip_index.CanSkipBinaryRange<int64_t>(i64_fid, 0, 2, 3, false, true));
ASSERT_FALSE(
skip_index.CanSkipBinaryRange<int64_t>(i64_fid, 0, 2, 3, true, true));
}
TEST(Sealed, SkipIndexSkipStringRange) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metrics_type = "L2";
auto pk_fid = schema->AddDebugField("pk", DataType::INT64);
auto string_fid = schema->AddDebugField("string_field", DataType::VARCHAR);
auto fake_vec_fid = schema->AddDebugField(
"fakeVec", DataType::VECTOR_FLOAT, dim, metrics_type);
size_t N = 5;
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
//test for string
std::vector<std::string> strings = {"e", "f", "g", "g", "j"};
auto string_field_data =
storage::CreateFieldData(DataType::VARCHAR, false, 1, N);
string_field_data->FillFieldData(strings.data(), N);
auto cm = milvus::storage::RemoteChunkManagerSingleton::GetInstance()
.GetRemoteChunkManager();
auto load_info = PrepareSingleFieldInsertBinlog(kCollectionID,
kPartitionID,
kSegmentID,
string_fid.get(),
{string_field_data},
cm);
segment->LoadFieldData(load_info);
auto& skip_index = segment->GetSkipIndex();
ASSERT_TRUE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::Equal, "w"));
ASSERT_FALSE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::Equal, "e"));
ASSERT_FALSE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::Equal, "j"));
ASSERT_TRUE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::LessThan, "e"));
ASSERT_FALSE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::LessEqual, "e"));
ASSERT_TRUE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::GreaterThan, "j"));
ASSERT_FALSE(skip_index.CanSkipUnaryRange<std::string>(
string_fid, 0, OpType::GreaterEqual, "j"));
ASSERT_FALSE(skip_index.CanSkipUnaryRange<int64_t>(
string_fid, 0, OpType::GreaterEqual, 1));
ASSERT_TRUE(skip_index.CanSkipBinaryRange<std::string>(
string_fid, 0, "a", "c", true, true));
ASSERT_TRUE(skip_index.CanSkipBinaryRange<std::string>(
string_fid, 0, "c", "e", true, false));
ASSERT_FALSE(skip_index.CanSkipBinaryRange<std::string>(
string_fid, 0, "c", "e", true, true));
ASSERT_FALSE(skip_index.CanSkipBinaryRange<std::string>(
string_fid, 0, "e", "k", false, true));
ASSERT_FALSE(skip_index.CanSkipBinaryRange<std::string>(
string_fid, 0, "j", "k", true, true));
ASSERT_TRUE(skip_index.CanSkipBinaryRange<std::string>(
string_fid, 0, "j", "k", false, true));
ASSERT_FALSE(skip_index.CanSkipBinaryRange<int64_t>(
string_fid, 0, 1, 2, false, true));
}
TEST(Sealed, QueryAllFields) {
auto schema = std::make_shared<Schema>();
auto metric_type = knowhere::metric::L2;
auto bool_field = schema->AddDebugField("bool", DataType::BOOL);
auto int8_field = schema->AddDebugField("int8", DataType::INT8);
auto int16_field = schema->AddDebugField("int16", DataType::INT16);
auto int32_field = schema->AddDebugField("int32", DataType::INT32);
auto int64_field = schema->AddDebugField("int64", DataType::INT64);
auto float_field = schema->AddDebugField("float", DataType::FLOAT);
auto double_field = schema->AddDebugField("double", DataType::DOUBLE);
auto varchar_field = schema->AddDebugField("varchar", DataType::VARCHAR);
auto json_field = schema->AddDebugField("json", DataType::JSON);
auto int_array_field =
schema->AddDebugField("int_array", DataType::ARRAY, DataType::INT8);
auto long_array_field =
schema->AddDebugField("long_array", DataType::ARRAY, DataType::INT64);
auto bool_array_field =
schema->AddDebugField("bool_array", DataType::ARRAY, DataType::BOOL);
auto string_array_field = schema->AddDebugField(
"string_array", DataType::ARRAY, DataType::VARCHAR);
auto double_array_field = schema->AddDebugField(
"double_array", DataType::ARRAY, DataType::DOUBLE);
auto float_array_field =
schema->AddDebugField("float_array", DataType::ARRAY, DataType::FLOAT);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, metric_type);
auto float16_vec = schema->AddDebugField(
"float16_vec", DataType::VECTOR_FLOAT16, 128, metric_type);
auto bfloat16_vec = schema->AddDebugField(
"bfloat16_vec", DataType::VECTOR_BFLOAT16, 128, metric_type);
auto int8_vec = schema->AddDebugField(
"int8_vec", DataType::VECTOR_INT8, 128, metric_type);
schema->set_primary_field_id(int64_field);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"},
{"metric_type", metric_type},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_sealed = CreateSealedSegment(schema, metaPtr);
auto segment =
dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
int64_t dataset_size = 1000;
int64_t dim = 128;
auto dataset = DataGen(schema, dataset_size);
segment_sealed = CreateSealedWithFieldDataLoaded(schema, dataset);
segment = dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
auto bool_values = dataset.get_col<bool>(bool_field);
auto int8_values = dataset.get_col<int8_t>(int8_field);
auto int16_values = dataset.get_col<int16_t>(int16_field);
auto int32_values = dataset.get_col<int32_t>(int32_field);
auto int64_values = dataset.get_col<int64_t>(int64_field);
auto float_values = dataset.get_col<float>(float_field);
auto double_values = dataset.get_col<double>(double_field);
auto varchar_values = dataset.get_col<std::string>(varchar_field);
auto json_values = dataset.get_col<std::string>(json_field);
auto int_array_values = dataset.get_col<ScalarFieldProto>(int_array_field);
auto long_array_values =
dataset.get_col<ScalarFieldProto>(long_array_field);
auto bool_array_values =
dataset.get_col<ScalarFieldProto>(bool_array_field);
auto string_array_values =
dataset.get_col<ScalarFieldProto>(string_array_field);
auto double_array_values =
dataset.get_col<ScalarFieldProto>(double_array_field);
auto float_array_values =
dataset.get_col<ScalarFieldProto>(float_array_field);
auto vector_values = dataset.get_col<float>(vec);
auto float16_vector_values = dataset.get_col<uint8_t>(float16_vec);
auto bfloat16_vector_values = dataset.get_col<uint8_t>(bfloat16_vec);
auto int8_vector_values = dataset.get_col<int8>(int8_vec);
auto ids_ds = GenRandomIds(dataset_size);
auto bool_result =
segment->bulk_subscript(bool_field, ids_ds->GetIds(), dataset_size);
auto int8_result =
segment->bulk_subscript(int8_field, ids_ds->GetIds(), dataset_size);
auto int16_result =
segment->bulk_subscript(int16_field, ids_ds->GetIds(), dataset_size);
auto int32_result =
segment->bulk_subscript(int32_field, ids_ds->GetIds(), dataset_size);
auto int64_result =
segment->bulk_subscript(int64_field, ids_ds->GetIds(), dataset_size);
auto float_result =
segment->bulk_subscript(float_field, ids_ds->GetIds(), dataset_size);
auto double_result =
segment->bulk_subscript(double_field, ids_ds->GetIds(), dataset_size);
auto varchar_result =
segment->bulk_subscript(varchar_field, ids_ds->GetIds(), dataset_size);
auto json_result =
segment->bulk_subscript(json_field, ids_ds->GetIds(), dataset_size);
auto int_array_result = segment->bulk_subscript(
int_array_field, ids_ds->GetIds(), dataset_size);
auto long_array_result = segment->bulk_subscript(
long_array_field, ids_ds->GetIds(), dataset_size);
auto bool_array_result = segment->bulk_subscript(
bool_array_field, ids_ds->GetIds(), dataset_size);
auto string_array_result = segment->bulk_subscript(
string_array_field, ids_ds->GetIds(), dataset_size);
auto double_array_result = segment->bulk_subscript(
double_array_field, ids_ds->GetIds(), dataset_size);
auto float_array_result = segment->bulk_subscript(
float_array_field, ids_ds->GetIds(), dataset_size);
auto vec_result =
segment->bulk_subscript(vec, ids_ds->GetIds(), dataset_size);
auto float16_vec_result =
segment->bulk_subscript(float16_vec, ids_ds->GetIds(), dataset_size);
auto bfloat16_vec_result =
segment->bulk_subscript(bfloat16_vec, ids_ds->GetIds(), dataset_size);
auto int8_vec_result =
segment->bulk_subscript(int8_vec, ids_ds->GetIds(), dataset_size);
EXPECT_EQ(bool_result->scalars().bool_data().data_size(), dataset_size);
EXPECT_EQ(int8_result->scalars().int_data().data_size(), dataset_size);
EXPECT_EQ(int16_result->scalars().int_data().data_size(), dataset_size);
EXPECT_EQ(int32_result->scalars().int_data().data_size(), dataset_size);
EXPECT_EQ(int64_result->scalars().long_data().data_size(), dataset_size);
EXPECT_EQ(float_result->scalars().float_data().data_size(), dataset_size);
EXPECT_EQ(double_result->scalars().double_data().data_size(), dataset_size);
EXPECT_EQ(varchar_result->scalars().string_data().data_size(),
dataset_size);
EXPECT_EQ(json_result->scalars().json_data().data_size(), dataset_size);
EXPECT_EQ(vec_result->vectors().float_vector().data_size(),
dataset_size * dim);
EXPECT_EQ(float16_vec_result->vectors().float16_vector().size(),
dataset_size * dim * 2);
EXPECT_EQ(bfloat16_vec_result->vectors().bfloat16_vector().size(),
dataset_size * dim * 2);
EXPECT_EQ(int8_vec_result->vectors().int8_vector().size(),
dataset_size * dim);
EXPECT_EQ(int_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(long_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(bool_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(string_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(double_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(float_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(bool_result->valid_data_size(), 0);
EXPECT_EQ(int8_result->valid_data_size(), 0);
EXPECT_EQ(int16_result->valid_data_size(), 0);
EXPECT_EQ(int32_result->valid_data_size(), 0);
EXPECT_EQ(int64_result->valid_data_size(), 0);
EXPECT_EQ(float_result->valid_data_size(), 0);
EXPECT_EQ(double_result->valid_data_size(), 0);
EXPECT_EQ(varchar_result->valid_data_size(), 0);
EXPECT_EQ(json_result->valid_data_size(), 0);
EXPECT_EQ(int_array_result->valid_data_size(), 0);
EXPECT_EQ(long_array_result->valid_data_size(), 0);
EXPECT_EQ(bool_array_result->valid_data_size(), 0);
EXPECT_EQ(string_array_result->valid_data_size(), 0);
EXPECT_EQ(double_array_result->valid_data_size(), 0);
EXPECT_EQ(float_array_result->valid_data_size(), 0);
}
TEST(Sealed, QueryAllNullableFields) {
auto schema = std::make_shared<Schema>();
auto metric_type = knowhere::metric::L2;
auto bool_field = schema->AddDebugField("bool", DataType::BOOL, true);
auto int8_field = schema->AddDebugField("int8", DataType::INT8, true);
auto int16_field = schema->AddDebugField("int16", DataType::INT16, true);
auto int32_field = schema->AddDebugField("int32", DataType::INT32, true);
auto int64_field = schema->AddDebugField("int64", DataType::INT64, false);
auto float_field = schema->AddDebugField("float", DataType::FLOAT, true);
auto double_field = schema->AddDebugField("double", DataType::DOUBLE, true);
auto varchar_field =
schema->AddDebugField("varchar", DataType::VARCHAR, true);
auto json_field = schema->AddDebugField("json", DataType::JSON, true);
auto int_array_field = schema->AddDebugField(
"int_array", DataType::ARRAY, DataType::INT8, true);
auto long_array_field = schema->AddDebugField(
"long_array", DataType::ARRAY, DataType::INT64, true);
auto bool_array_field = schema->AddDebugField(
"bool_array", DataType::ARRAY, DataType::BOOL, true);
auto string_array_field = schema->AddDebugField(
"string_array", DataType::ARRAY, DataType::VARCHAR, true);
auto double_array_field = schema->AddDebugField(
"double_array", DataType::ARRAY, DataType::DOUBLE, true);
auto float_array_field = schema->AddDebugField(
"float_array", DataType::ARRAY, DataType::FLOAT, true);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, metric_type);
schema->set_primary_field_id(int64_field);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"},
{"metric_type", metric_type},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_sealed = CreateSealedSegment(schema, metaPtr);
auto segment =
dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
int64_t dataset_size = 1000;
int64_t dim = 128;
auto dataset = DataGen(schema, dataset_size);
segment_sealed = CreateSealedWithFieldDataLoaded(schema, dataset);
segment = dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
auto bool_values = dataset.get_col<bool>(bool_field);
auto int8_values = dataset.get_col<int8_t>(int8_field);
auto int16_values = dataset.get_col<int16_t>(int16_field);
auto int32_values = dataset.get_col<int32_t>(int32_field);
auto int64_values = dataset.get_col<int64_t>(int64_field);
auto float_values = dataset.get_col<float>(float_field);
auto double_values = dataset.get_col<double>(double_field);
auto varchar_values = dataset.get_col<std::string>(varchar_field);
auto json_values = dataset.get_col<std::string>(json_field);
auto int_array_values = dataset.get_col<ScalarFieldProto>(int_array_field);
auto long_array_values =
dataset.get_col<ScalarFieldProto>(long_array_field);
auto bool_array_values =
dataset.get_col<ScalarFieldProto>(bool_array_field);
auto string_array_values =
dataset.get_col<ScalarFieldProto>(string_array_field);
auto double_array_values =
dataset.get_col<ScalarFieldProto>(double_array_field);
auto float_array_values =
dataset.get_col<ScalarFieldProto>(float_array_field);
auto vector_values = dataset.get_col<float>(vec);
auto bool_valid_values = dataset.get_col_valid(bool_field);
auto int8_valid_values = dataset.get_col_valid(int8_field);
auto int16_valid_values = dataset.get_col_valid(int16_field);
auto int32_valid_values = dataset.get_col_valid(int32_field);
auto float_valid_values = dataset.get_col_valid(float_field);
auto double_valid_values = dataset.get_col_valid(double_field);
auto varchar_valid_values = dataset.get_col_valid(varchar_field);
auto json_valid_values = dataset.get_col_valid(json_field);
auto int_array_valid_values = dataset.get_col_valid(int_array_field);
auto long_array_valid_values = dataset.get_col_valid(long_array_field);
auto bool_array_valid_values = dataset.get_col_valid(bool_array_field);
auto string_array_valid_values = dataset.get_col_valid(string_array_field);
auto double_array_valid_values = dataset.get_col_valid(double_array_field);
auto float_array_valid_values = dataset.get_col_valid(float_array_field);
auto ids_ds = GenRandomIds(dataset_size);
auto bool_result =
segment->bulk_subscript(bool_field, ids_ds->GetIds(), dataset_size);
auto int8_result =
segment->bulk_subscript(int8_field, ids_ds->GetIds(), dataset_size);
auto int16_result =
segment->bulk_subscript(int16_field, ids_ds->GetIds(), dataset_size);
auto int32_result =
segment->bulk_subscript(int32_field, ids_ds->GetIds(), dataset_size);
auto int64_result =
segment->bulk_subscript(int64_field, ids_ds->GetIds(), dataset_size);
auto float_result =
segment->bulk_subscript(float_field, ids_ds->GetIds(), dataset_size);
auto double_result =
segment->bulk_subscript(double_field, ids_ds->GetIds(), dataset_size);
auto varchar_result =
segment->bulk_subscript(varchar_field, ids_ds->GetIds(), dataset_size);
auto json_result =
segment->bulk_subscript(json_field, ids_ds->GetIds(), dataset_size);
auto int_array_result = segment->bulk_subscript(
int_array_field, ids_ds->GetIds(), dataset_size);
auto long_array_result = segment->bulk_subscript(
long_array_field, ids_ds->GetIds(), dataset_size);
auto bool_array_result = segment->bulk_subscript(
bool_array_field, ids_ds->GetIds(), dataset_size);
auto string_array_result = segment->bulk_subscript(
string_array_field, ids_ds->GetIds(), dataset_size);
auto double_array_result = segment->bulk_subscript(
double_array_field, ids_ds->GetIds(), dataset_size);
auto float_array_result = segment->bulk_subscript(
float_array_field, ids_ds->GetIds(), dataset_size);
auto vec_result =
segment->bulk_subscript(vec, ids_ds->GetIds(), dataset_size);
EXPECT_EQ(bool_result->scalars().bool_data().data_size(), dataset_size);
EXPECT_EQ(int8_result->scalars().int_data().data_size(), dataset_size);
EXPECT_EQ(int16_result->scalars().int_data().data_size(), dataset_size);
EXPECT_EQ(int32_result->scalars().int_data().data_size(), dataset_size);
EXPECT_EQ(int64_result->scalars().long_data().data_size(), dataset_size);
EXPECT_EQ(float_result->scalars().float_data().data_size(), dataset_size);
EXPECT_EQ(double_result->scalars().double_data().data_size(), dataset_size);
EXPECT_EQ(varchar_result->scalars().string_data().data_size(),
dataset_size);
EXPECT_EQ(json_result->scalars().json_data().data_size(), dataset_size);
EXPECT_EQ(vec_result->vectors().float_vector().data_size(),
dataset_size * dim);
EXPECT_EQ(int_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(long_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(bool_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(string_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(double_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(float_array_result->scalars().array_data().data_size(),
dataset_size);
EXPECT_EQ(bool_result->valid_data_size(), dataset_size);
EXPECT_EQ(int8_result->valid_data_size(), dataset_size);
EXPECT_EQ(int16_result->valid_data_size(), dataset_size);
EXPECT_EQ(int32_result->valid_data_size(), dataset_size);
EXPECT_EQ(float_result->valid_data_size(), dataset_size);
EXPECT_EQ(double_result->valid_data_size(), dataset_size);
EXPECT_EQ(varchar_result->valid_data_size(), dataset_size);
EXPECT_EQ(json_result->valid_data_size(), dataset_size);
EXPECT_EQ(int_array_result->valid_data_size(), dataset_size);
EXPECT_EQ(long_array_result->valid_data_size(), dataset_size);
EXPECT_EQ(bool_array_result->valid_data_size(), dataset_size);
EXPECT_EQ(string_array_result->valid_data_size(), dataset_size);
EXPECT_EQ(double_array_result->valid_data_size(), dataset_size);
EXPECT_EQ(float_array_result->valid_data_size(), dataset_size);
}
TEST(Sealed, SearchSortedPk) {
auto schema = std::make_shared<Schema>();
auto varchar_pk_field = schema->AddDebugField("pk", DataType::VARCHAR);
schema->set_primary_field_id(varchar_pk_field);
auto segment_sealed = CreateSealedSegment(
schema, nullptr, 999, SegcoreConfig::default_config(), true);
auto segment =
dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
int64_t dataset_size = 1000;
auto dataset = DataGen(schema, dataset_size, 42, 0, 10);
LoadGeneratedDataIntoSegment(dataset, segment);
auto pk_values = dataset.get_col<std::string>(varchar_pk_field);
auto offsets = segment->search_pk(PkType(pk_values[100]), Timestamp(99999));
EXPECT_EQ(10, offsets.size());
EXPECT_EQ(100, offsets[0].get());
auto offsets2 = segment->search_pk(PkType(pk_values[100]), int64_t(105));
EXPECT_EQ(6, offsets2.size());
EXPECT_EQ(100, offsets2[0].get());
}
TEST(Sealed, QueryVectorArrayAllFields) {
auto schema = std::make_shared<Schema>();
auto metric_type = knowhere::metric::L2;
auto int64_field = schema->AddDebugField("int64", DataType::INT64);
auto array_vec = schema->AddDebugVectorArrayField(
"array_vec", DataType::VECTOR_FLOAT, 128, metric_type);
schema->set_primary_field_id(int64_field);
std::map<FieldId, FieldIndexMeta> filedMap{};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
int64_t dataset_size = 1000;
int64_t dim = 128;
auto dataset = DataGen(schema, dataset_size);
auto segment_sealed = CreateSealedWithFieldDataLoaded(schema, dataset);
auto segment =
dynamic_cast<ChunkedSegmentSealedImpl*>(segment_sealed.get());
auto int64_values = dataset.get_col<int64_t>(int64_field);
auto array_vec_values = dataset.get_col<VectorFieldProto>(array_vec);
auto ids_ds = GenRandomIds(dataset_size);
auto int64_result =
segment->bulk_subscript(int64_field, ids_ds->GetIds(), dataset_size);
auto array_float_vector_result =
segment->bulk_subscript(array_vec, ids_ds->GetIds(), dataset_size);
EXPECT_EQ(int64_result->scalars().long_data().data_size(), dataset_size);
EXPECT_EQ(array_float_vector_result->vectors().vector_array().data_size(),
dataset_size);
auto verify_float_vectors = [](auto arr1, auto arr2) {
static constexpr float EPSILON = 1e-6;
EXPECT_EQ(arr1.size(), arr2.size());
for (int64_t i = 0; i < arr1.size(); ++i) {
EXPECT_NEAR(arr1[i], arr2[i], EPSILON);
}
};
for (int64_t i = 0; i < dataset_size; ++i) {
auto arrow_array = array_float_vector_result->vectors()
.vector_array()
.data()[i]
.float_vector()
.data();
auto expected_array =
array_vec_values[ids_ds->GetIds()[i]].float_vector().data();
verify_float_vectors(arrow_array, expected_array);
}
EXPECT_EQ(int64_result->valid_data_size(), 0);
EXPECT_EQ(array_float_vector_result->valid_data_size(), 0);
}