milvus/internal/core/unittest/test_growing_index.cpp

600 lines
26 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include "common/Utils.h"
#include "pb/plan.pb.h"
#include "pb/schema.pb.h"
#include "query/Plan.h"
#include "segcore/ConcurrentVector.h"
#include "segcore/SegmentGrowing.h"
#include "segcore/SegmentGrowingImpl.h"
#include "test_utils/DataGen.h"
#include "index/IndexFactory.h"
#include "test_utils/indexbuilder_test_utils.h"
using namespace milvus;
using namespace milvus::segcore;
namespace pb = milvus::proto;
using Param = std::tuple<DataType,
/*index type*/ std::string,
knowhere::MetricType,
/*dense vector index type*/ std::optional<std::string>,
/*refine type*/ std::optional<std::string>>;
class GrowingIndexTest : public ::testing::TestWithParam<Param> {
void
SetUp() override {
auto param = GetParam();
data_type = std::get<0>(param);
index_type = std::get<1>(param);
metric_type = std::get<2>(param);
dense_vec_intermin_index_type = std::get<3>(param);
dense_refine_type = std::get<4>(param);
if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
is_sparse = true;
if (metric_type == knowhere::metric::IP) {
intermin_index_with_raw_data = true;
} else {
intermin_index_with_raw_data = false;
}
} else {
if (!dense_vec_intermin_index_type.has_value()) {
dense_vec_intermin_index_type =
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC;
}
if (dense_vec_intermin_index_type.value() ==
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC) {
intermin_index_with_raw_data = true;
} else {
// scann dvr index
intermin_index_with_raw_data = false;
}
}
}
protected:
std::string index_type;
knowhere::MetricType metric_type;
DataType data_type;
std::optional<std::string> dense_vec_intermin_index_type =
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC;
bool intermin_index_with_raw_data;
bool is_sparse = false;
std::optional<std::string> dense_refine_type = "NONE";
};
INSTANTIATE_TEST_SUITE_P(
FloatIndexTypeParameters,
GrowingIndexTest,
::testing::Values(
std::make_tuple(DataType::VECTOR_FLOAT,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::L2,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC,
std::nullopt),
std::make_tuple(DataType::VECTOR_FLOAT,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC,
std::nullopt),
std::make_tuple(DataType::VECTOR_FLOAT,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::L2,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"NONE"),
std::make_tuple(DataType::VECTOR_FLOAT,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"NONE"),
std::make_tuple(DataType::VECTOR_FLOAT,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::L2,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"FLOAT16")));
INSTANTIATE_TEST_SUITE_P(
SparseIndexTypeParameters,
GrowingIndexTest,
::testing::Combine(
::testing::Values(DataType::VECTOR_SPARSE_FLOAT),
// VecIndexConfig will convert INDEX_SPARSE_INVERTED_INDEX/
// INDEX_SPARSE_WAND to INDEX_SPARSE_INVERTED_INDEX_CC/
// INDEX_SPARSE_WAND_CC, thus no need to use _CC version here.
::testing::Values(knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX,
knowhere::IndexEnum::INDEX_SPARSE_WAND),
::testing::Values(
knowhere::metric::
IP), // when metric == IP, growing segment will keep data in intermin index
::testing::Values(std::nullopt),
::testing::Values(std::nullopt)));
INSTANTIATE_TEST_SUITE_P(
HalfFloatIndexTypeParameters,
GrowingIndexTest,
::testing::Values(
std::make_tuple(DataType::VECTOR_FLOAT16,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC,
std::nullopt),
std::make_tuple(DataType::VECTOR_BFLOAT16,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC,
std::nullopt),
std::make_tuple(DataType::VECTOR_FLOAT16,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"NONE"),
std::make_tuple(DataType::VECTOR_BFLOAT16,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"NONE"),
std::make_tuple(DataType::VECTOR_FLOAT16,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"FLOAT16"),
std::make_tuple(DataType::VECTOR_BFLOAT16,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::COSINE,
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR,
"FLOAT16")));
TEST_P(GrowingIndexTest, Correctness) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField("embeddings", data_type, 128, metric_type);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", index_type},
{"metric_type", metric_type},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
if (dense_vec_intermin_index_type.has_value()) {
config.set_dense_vector_intermin_index_type(
dense_vec_intermin_index_type.value());
if (dense_vec_intermin_index_type.value() ==
knowhere::IndexEnum::INDEX_FAISS_SCANN_DVR) {
auto nlist = config.get_nlist();
config.set_sub_dim(4);
config.set_nprobe(int(0.4 * nlist));
config.set_refine_ratio(4.0);
if (dense_refine_type.has_value()) {
config.set_refine_quant_type(dense_refine_type.value());
config.set_refine_with_quant_flag(false);
}
}
}
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(226985, std::move(filedMap));
auto segment = CreateGrowingSegment(schema, metaPtr);
auto segmentImplPtr = dynamic_cast<SegmentGrowingImpl*>(segment.get());
milvus::proto::plan::PlanNode plan_node;
auto vector_anns = plan_node.mutable_vector_anns();
if (is_sparse) {
vector_anns->set_vector_type(
milvus::proto::plan::VectorType::SparseFloatVector);
} else if (data_type == DataType::VECTOR_FLOAT16) {
vector_anns->set_vector_type(
milvus::proto::plan::VectorType::Float16Vector);
} else if (data_type == DataType::VECTOR_BFLOAT16) {
vector_anns->set_vector_type(
milvus::proto::plan::VectorType::BFloat16Vector);
} else {
vector_anns->set_vector_type(
milvus::proto::plan::VectorType::FloatVector);
}
vector_anns->set_placeholder_tag("$0");
vector_anns->set_field_id(102);
auto query_info = vector_anns->mutable_query_info();
query_info->set_topk(5);
query_info->set_round_decimal(3);
query_info->set_metric_type(metric_type);
query_info->set_search_params(R"({"nprobe": 16})");
auto plan_str = plan_node.SerializeAsString();
milvus::proto::plan::PlanNode range_query_plan_node;
auto vector_range_querys = range_query_plan_node.mutable_vector_anns();
if (is_sparse) {
vector_range_querys->set_vector_type(
milvus::proto::plan::VectorType::SparseFloatVector);
} else if (data_type == DataType::VECTOR_FLOAT16) {
vector_range_querys->set_vector_type(
milvus::proto::plan::VectorType::Float16Vector);
} else if (data_type == DataType::VECTOR_BFLOAT16) {
vector_range_querys->set_vector_type(
milvus::proto::plan::VectorType::BFloat16Vector);
} else {
vector_range_querys->set_vector_type(
milvus::proto::plan::VectorType::FloatVector);
}
vector_range_querys->set_placeholder_tag("$0");
vector_range_querys->set_field_id(102);
auto range_query_info = vector_range_querys->mutable_query_info();
range_query_info->set_topk(5);
range_query_info->set_round_decimal(3);
range_query_info->set_metric_type(metric_type);
if (PositivelyRelated(metric_type)) {
range_query_info->set_search_params(
R"({"nprobe": 10, "radius": 500, "range_filter": 600})");
} else {
range_query_info->set_search_params(
R"({"nprobe": 10, "radius": 600, "range_filter": 500})");
}
auto range_plan_str = range_query_plan_node.SerializeAsString();
int64_t per_batch = 10000;
int64_t n_batch = 20;
int64_t top_k = 5;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto offset = segment->PreInsert(per_batch);
auto pks = dataset.get_col<int64_t>(pk);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
const VectorBase* field_data = nullptr;
if (is_sparse) {
field_data = segmentImplPtr->get_insert_record()
.get_data<milvus::SparseFloatVector>(vec);
} else if (data_type == DataType::VECTOR_FLOAT16) {
field_data = segmentImplPtr->get_insert_record()
.get_data<milvus::Float16Vector>(vec);
} else if (data_type == DataType::VECTOR_BFLOAT16) {
field_data = segmentImplPtr->get_insert_record()
.get_data<milvus::BFloat16Vector>(vec);
} else {
field_data = segmentImplPtr->get_insert_record()
.get_data<milvus::FloatVector>(vec);
}
auto inserted = (i + 1) * per_batch;
// once index built, chunk data will be removed.
// growing index will only be built when num rows reached
// get_build_threshold(). This value for sparse is 0, thus sparse index
// will be built since the first chunk. Dense segment buffers the first
// 2 chunks before building an index in this test case.
if ((!is_sparse && i < 2) || !intermin_index_with_raw_data) {
EXPECT_EQ(field_data->num_chunk(),
upper_div(inserted, field_data->get_size_per_chunk()));
} else {
EXPECT_EQ(field_data->num_chunk(), 0);
}
auto num_queries = 5;
namespace ser = milvus::proto::common;
ser::PlaceholderGroup ph_group_raw;
if (is_sparse) {
ph_group_raw = CreateSparseFloatPlaceholderGroup(num_queries);
} else if (data_type == DataType::VECTOR_FLOAT16) {
ph_group_raw = CreatePlaceholderGroup<milvus::Float16Vector>(
num_queries, 128, 1024);
} else if (data_type == DataType::VECTOR_BFLOAT16) {
ph_group_raw = CreatePlaceholderGroup<milvus::BFloat16Vector>(
num_queries, 128, 1024);
} else {
ph_group_raw = CreatePlaceholderGroup(num_queries, 128, 1024);
}
auto plan = milvus::query::CreateSearchPlanByExpr(
schema, plan_str.data(), plan_str.size());
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
EXPECT_EQ(sr->total_nq_, num_queries);
EXPECT_EQ(sr->unity_topK_, top_k);
EXPECT_EQ(sr->distances_.size(), num_queries * top_k);
EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k);
// range search for sparse is not yet supported
if (is_sparse) {
continue;
}
auto range_plan = milvus::query::CreateSearchPlanByExpr(
schema, range_plan_str.data(), range_plan_str.size());
auto range_ph_group = ParsePlaceholderGroup(
range_plan.get(), ph_group_raw.SerializeAsString());
auto range_sr =
segment->Search(range_plan.get(), range_ph_group.get(), timestamp);
ASSERT_EQ(range_sr->total_nq_, num_queries);
for (int j = 0; j < range_sr->seg_offsets_.size(); j++) {
if (range_sr->seg_offsets_[j] != -1) {
EXPECT_TRUE(range_sr->distances_[j] >= 500.0 &&
range_sr->distances_[j] <= 600.0);
}
}
}
}
TEST_P(GrowingIndexTest, AddWithoutBuildPool) {
constexpr int N = 1024;
constexpr int TOPK = 100;
constexpr int dim = 128;
constexpr int add_cont = 5;
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = data_type;
create_index_info.metric_type = metric_type;
create_index_info.index_type = index_type;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField("embeddings", data_type, 128, metric_type);
schema->set_primary_field_id(pk);
auto dataset = DataGen(schema, N);
auto build_config = generate_build_conf(index_type, metric_type);
if (data_type == DataType::VECTOR_FLOAT) {
auto index = std::make_unique<milvus::index::VectorMemIndex<float>>(
index_type,
metric_type,
knowhere::Version::GetCurrentVersion().VersionNumber(),
false,
milvus::storage::FileManagerContext());
auto float_data = dataset.get_col<float>(vec);
index->BuildWithDataset(knowhere::GenDataSet(N, dim, float_data.data()),
build_config);
for (int i = 0; i < add_cont; i++) {
index->AddWithDataset(
knowhere::GenDataSet(N, dim, float_data.data()), build_config);
}
EXPECT_EQ(index->Count(), (add_cont + 1) * N);
} else if (data_type == DataType::VECTOR_FLOAT16) {
auto index = std::make_unique<milvus::index::VectorMemIndex<float16>>(
index_type,
metric_type,
knowhere::Version::GetCurrentVersion().VersionNumber(),
false,
milvus::storage::FileManagerContext());
auto float16_data = dataset.get_col<float16>(vec);
index->BuildWithDataset(
knowhere::GenDataSet(N, dim, float16_data.data()), build_config);
for (int i = 0; i < add_cont; i++) {
index->AddWithDataset(
knowhere::GenDataSet(N, dim, float16_data.data()),
build_config);
}
EXPECT_EQ(index->Count(), (add_cont + 1) * N);
} else if (data_type == DataType::VECTOR_BFLOAT16) {
auto index = std::make_unique<milvus::index::VectorMemIndex<bfloat16>>(
index_type,
metric_type,
knowhere::Version::GetCurrentVersion().VersionNumber(),
false,
milvus::storage::FileManagerContext());
auto bfloat16_data = dataset.get_col<bfloat16>(vec);
index->BuildWithDataset(
knowhere::GenDataSet(N, dim, bfloat16_data.data()), build_config);
for (int i = 0; i < add_cont; i++) {
index->AddWithDataset(
knowhere::GenDataSet(N, dim, bfloat16_data.data()),
build_config);
}
EXPECT_EQ(index->Count(), (add_cont + 1) * N);
} else if (is_sparse) {
auto index = std::make_unique<milvus::index::VectorMemIndex<float>>(
index_type,
metric_type,
knowhere::Version::GetCurrentVersion().VersionNumber(),
false,
milvus::storage::FileManagerContext());
auto sparse_data =
dataset.get_col<knowhere::sparse::SparseRow<float>>(vec);
index->BuildWithDataset(
knowhere::GenDataSet(N, dim, sparse_data.data()), build_config);
for (int i = 0; i < add_cont; i++) {
index->AddWithDataset(
knowhere::GenDataSet(N, dim, sparse_data.data()), build_config);
}
EXPECT_EQ(index->Count(), (add_cont + 1) * N);
} else {
throw std::invalid_argument("Unsupported data type");
}
}
TEST_P(GrowingIndexTest, MissIndexMeta) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField("embeddings", data_type, 128, metric_type);
schema->set_primary_field_id(pk);
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
auto segment = CreateGrowingSegment(schema, nullptr);
}
TEST_P(GrowingIndexTest, GetVector) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField("embeddings", data_type, 128, metric_type);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", index_type},
{"metric_type", metric_type},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
if (dense_vec_intermin_index_type.has_value()) {
config.set_dense_vector_intermin_index_type(
dense_vec_intermin_index_type.value());
}
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_growing = CreateGrowingSegment(schema, metaPtr);
auto segment = dynamic_cast<SegmentGrowingImpl*>(segment_growing.get());
if (data_type == DataType::VECTOR_FLOAT) {
// GetVector for VECTOR_FLOAT
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<float>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector =
result.get()->mutable_vectors()->float_vector().data();
EXPECT_TRUE(vector.size() == num_inserted * dim);
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(vector[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
} else if (data_type == DataType::VECTOR_FLOAT16) {
// GetVector for VECTOR_FLOAT16
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<float16>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()->mutable_vectors()->float16_vector();
EXPECT_TRUE(vector.size() == num_inserted * dim * sizeof(float16));
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(reinterpret_cast<float16*>(
vector.data())[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
} else if (data_type == DataType::VECTOR_BFLOAT16) {
// GetVector for VECTOR_FLOAT16
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<bfloat16>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()->mutable_vectors()->bfloat16_vector();
EXPECT_TRUE(vector.size() == num_inserted * dim * sizeof(bfloat16));
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(reinterpret_cast<bfloat16*>(
vector.data())[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
} else if (is_sparse) {
// GetVector for VECTOR_SPARSE_FLOAT
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec =
dataset.get_col<knowhere::sparse::SparseRow<float>>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()
->mutable_vectors()
->sparse_float_vector()
.contents();
EXPECT_TRUE(result.get()
->mutable_vectors()
->sparse_float_vector()
.contents_size() == num_inserted);
auto sparse_rows = SparseBytesToRows(vector);
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
auto actual_row = sparse_rows[i];
auto expected_row = fakevec[(id % per_batch)];
EXPECT_TRUE(actual_row.size() == expected_row.size());
for (size_t j = 0; j < actual_row.size(); ++j) {
EXPECT_TRUE(actual_row[j].id == expected_row[j].id);
EXPECT_TRUE(actual_row[j].val == expected_row[j].val);
}
}
}
}
}