mirror of https://github.com/milvus-io/milvus.git
104 lines
3.6 KiB
Python
104 lines
3.6 KiB
Python
import h5py
|
|
import numpy as np
|
|
import time
|
|
import sys
|
|
import threading
|
|
from pathlib import Path
|
|
from loguru import logger
|
|
from pymilvus import connections, Collection
|
|
|
|
|
|
all_index_types = ["IVF_FLAT", "IVF_SQ8", "HNSW"]
|
|
|
|
|
|
def read_benchmark_hdf5(file_path):
|
|
|
|
f = h5py.File(file_path, 'r')
|
|
train = np.array(f["train"])
|
|
test = np.array(f["test"])
|
|
neighbors = np.array(f["neighbors"])
|
|
f.close()
|
|
return train, test, neighbors
|
|
|
|
|
|
def gen_search_param(index_type, metric_type="L2"):
|
|
search_params = []
|
|
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
|
|
for nprobe in [10]:
|
|
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
|
search_params.append(ivf_search_params)
|
|
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
|
|
for nprobe in [10]:
|
|
bin_search_params = {"metric_type": "HAMMING", "params": {"nprobe": nprobe}}
|
|
search_params.append(bin_search_params)
|
|
elif index_type in ["HNSW"]:
|
|
for ef in [150]:
|
|
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
|
|
search_params.append(hnsw_search_param)
|
|
elif index_type == "ANNOY":
|
|
for search_k in [1000]:
|
|
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
|
|
search_params.append(annoy_search_param)
|
|
else:
|
|
logger.info("Invalid index_type.")
|
|
raise Exception("Invalid index_type.")
|
|
return search_params[0]
|
|
|
|
|
|
dim = 128
|
|
TIMEOUT = 200
|
|
|
|
|
|
def search_test(host="127.0.0.1", index_type="HNSW"):
|
|
logger.info(f"recall test for index type {index_type}")
|
|
file_path = f"{str(Path(__file__).absolute().parent.parent.parent)}/assets/ann_hdf5/sift-128-euclidean.hdf5"
|
|
train, test, neighbors = read_benchmark_hdf5(file_path)
|
|
connections.connect(host=host, port="19530")
|
|
collection = Collection(name=f"sift_128_euclidean_{index_type}")
|
|
nq = 10000
|
|
topK = 100
|
|
search_params = gen_search_param(index_type)
|
|
for i in range(3):
|
|
t0 = time.time()
|
|
logger.info(f"\nSearch...")
|
|
# define output_fields of search result
|
|
res = collection.search(
|
|
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
|
)
|
|
t1 = time.time()
|
|
logger.info(f"search cost {t1 - t0:.4f} seconds")
|
|
result_ids = []
|
|
for hits in res:
|
|
result_id = []
|
|
for hit in hits:
|
|
result_id.append(hit.entity.get("int64"))
|
|
result_ids.append(result_id)
|
|
|
|
# calculate recall
|
|
true_ids = neighbors[:nq, :topK]
|
|
sum_radio = 0.0
|
|
for index, item in enumerate(result_ids):
|
|
# tmp = set(item).intersection(set(flat_id_list[index]))
|
|
assert len(item) == len(true_ids[index]), f"get {len(item)} but expect {len(true_ids[index])}"
|
|
tmp = set(true_ids[index]).intersection(set(item))
|
|
sum_radio = sum_radio + len(tmp) / len(item)
|
|
recall = round(sum_radio / len(result_ids), 6)
|
|
logger.info(f"recall={recall}")
|
|
if index_type in ["IVF_PQ", "ANNOY"]:
|
|
assert recall >= 0.6, f"recall={recall} < 0.6"
|
|
else:
|
|
assert 0.95 <= recall < 1.0, f"recall is {recall}, less than 0.95, greater than or equal to 1.0"
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
import threading
|
|
parser = argparse.ArgumentParser(description='config for recall test')
|
|
parser.add_argument('--host', type=str, default="127.0.0.1", help='milvus server ip')
|
|
args = parser.parse_args()
|
|
host = args.host
|
|
tasks = []
|
|
for index_type in ["HNSW"]:
|
|
search_test(host, index_type)
|