milvus/tests/restful_client_v2/testcases/test_alias_operation.py

126 lines
4.4 KiB
Python

import random
from sklearn import preprocessing
import numpy as np
from utils.utils import gen_collection_name
from utils.util_log import test_log as logger
import pytest
from base.testbase import TestBase
@pytest.mark.L0
class TestAliasE2E(TestBase):
def test_alias_e2e(self):
"""
"""
# list alias before create
rsp = self.alias_client.list_alias()
name = gen_collection_name()
client = self.collection_client
payload = {
"collectionName": name,
"schema": {
"fields": [
{"fieldName": "book_id", "dataType": "Int64", "isPrimary": True, "elementTypeParams": {}},
{"fieldName": "word_count", "dataType": "Int64", "elementTypeParams": {}},
{"fieldName": "book_describe", "dataType": "VarChar", "elementTypeParams": {"max_length": "256"}},
{"fieldName": "book_intro", "dataType": "FloatVector", "elementTypeParams": {"dim": f"{128}"}}
]
},
"indexParams": [{"fieldName": "book_intro", "indexName": "book_intro_vector", "metricType": "L2"}]
}
logger.info(f"create collection {name} with payload: {payload}")
rsp = client.collection_create(payload)
# create alias
alias_name = name + "_alias"
payload = {
"collectionName": name,
"aliasName": alias_name
}
rsp = self.alias_client.create_alias(payload)
assert rsp['code'] == 200
# list alias after create
rsp = self.alias_client.list_alias()
assert alias_name in rsp['data']
# describe alias
rsp = self.alias_client.describe_alias(alias_name)
assert rsp['data']["aliasName"] == alias_name
assert rsp['data']["collectionName"] == name
# do crud operation by alias
# insert data by alias
data = []
for j in range(3000):
tmp = {
"book_id": j,
"word_count": j,
"book_describe": f"book_{j}",
"book_intro": preprocessing.normalize([np.array([random.random() for _ in range(128)])])[0].tolist(),
}
data.append(tmp)
payload = {
"collectionName": alias_name,
"data": data
}
rsp = self.vector_client.vector_insert(payload)
# delete data by alias
payload = {
"collectionName": alias_name,
"ids": [1, 2, 3]
}
rsp = self.vector_client.vector_delete(payload)
# upsert data by alias
upsert_data = []
for j in range(100):
tmp = {
"book_id": j,
"word_count": j + 1,
"book_describe": f"book_{j + 2}",
"book_intro": preprocessing.normalize([np.array([random.random() for _ in range(128)])])[0].tolist(),
}
upsert_data.append(tmp)
payload = {
"collectionName": alias_name,
"data": upsert_data
}
rsp = self.vector_client.vector_upsert(payload)
# search data by alias
payload = {
"collectionName": alias_name,
"vector": preprocessing.normalize([np.array([random.random() for i in range(128)])])[0].tolist()
}
rsp = self.vector_client.vector_search(payload)
# query data by alias
payload = {
"collectionName": alias_name,
"filter": "book_id > 10"
}
rsp = self.vector_client.vector_query(payload)
# alter alias to another collection
new_name = gen_collection_name()
payload = {
"collectionName": new_name,
"metricType": "L2",
"dimension": 128,
}
rsp = client.collection_create(payload)
payload = {
"collectionName": new_name,
"aliasName": alias_name
}
rsp = self.alias_client.alter_alias(payload)
# describe alias
rsp = self.alias_client.describe_alias(alias_name)
assert rsp['data']["aliasName"] == alias_name
assert rsp['data']["collectionName"] == new_name
# query data by alias, expect no data
payload = {
"collectionName": alias_name,
"filter": "id > 0"
}
rsp = self.vector_client.vector_query(payload)
assert rsp['data'] == []