mirror of https://github.com/milvus-io/milvus.git
126 lines
4.4 KiB
Python
126 lines
4.4 KiB
Python
import random
|
|
from sklearn import preprocessing
|
|
import numpy as np
|
|
from utils.utils import gen_collection_name
|
|
from utils.util_log import test_log as logger
|
|
import pytest
|
|
from base.testbase import TestBase
|
|
|
|
|
|
@pytest.mark.L0
|
|
class TestAliasE2E(TestBase):
|
|
|
|
def test_alias_e2e(self):
|
|
"""
|
|
"""
|
|
# list alias before create
|
|
rsp = self.alias_client.list_alias()
|
|
name = gen_collection_name()
|
|
client = self.collection_client
|
|
payload = {
|
|
"collectionName": name,
|
|
"schema": {
|
|
"fields": [
|
|
{"fieldName": "book_id", "dataType": "Int64", "isPrimary": True, "elementTypeParams": {}},
|
|
{"fieldName": "word_count", "dataType": "Int64", "elementTypeParams": {}},
|
|
{"fieldName": "book_describe", "dataType": "VarChar", "elementTypeParams": {"max_length": "256"}},
|
|
{"fieldName": "book_intro", "dataType": "FloatVector", "elementTypeParams": {"dim": f"{128}"}}
|
|
]
|
|
},
|
|
"indexParams": [{"fieldName": "book_intro", "indexName": "book_intro_vector", "metricType": "L2"}]
|
|
}
|
|
logger.info(f"create collection {name} with payload: {payload}")
|
|
rsp = client.collection_create(payload)
|
|
# create alias
|
|
alias_name = name + "_alias"
|
|
payload = {
|
|
"collectionName": name,
|
|
"aliasName": alias_name
|
|
}
|
|
rsp = self.alias_client.create_alias(payload)
|
|
assert rsp['code'] == 200
|
|
# list alias after create
|
|
rsp = self.alias_client.list_alias()
|
|
assert alias_name in rsp['data']
|
|
# describe alias
|
|
rsp = self.alias_client.describe_alias(alias_name)
|
|
assert rsp['data']["aliasName"] == alias_name
|
|
assert rsp['data']["collectionName"] == name
|
|
|
|
# do crud operation by alias
|
|
# insert data by alias
|
|
data = []
|
|
for j in range(3000):
|
|
tmp = {
|
|
"book_id": j,
|
|
"word_count": j,
|
|
"book_describe": f"book_{j}",
|
|
"book_intro": preprocessing.normalize([np.array([random.random() for _ in range(128)])])[0].tolist(),
|
|
}
|
|
data.append(tmp)
|
|
|
|
payload = {
|
|
"collectionName": alias_name,
|
|
"data": data
|
|
}
|
|
rsp = self.vector_client.vector_insert(payload)
|
|
# delete data by alias
|
|
payload = {
|
|
"collectionName": alias_name,
|
|
"ids": [1, 2, 3]
|
|
}
|
|
rsp = self.vector_client.vector_delete(payload)
|
|
|
|
# upsert data by alias
|
|
upsert_data = []
|
|
for j in range(100):
|
|
tmp = {
|
|
"book_id": j,
|
|
"word_count": j + 1,
|
|
"book_describe": f"book_{j + 2}",
|
|
"book_intro": preprocessing.normalize([np.array([random.random() for _ in range(128)])])[0].tolist(),
|
|
}
|
|
upsert_data.append(tmp)
|
|
payload = {
|
|
"collectionName": alias_name,
|
|
"data": upsert_data
|
|
}
|
|
rsp = self.vector_client.vector_upsert(payload)
|
|
# search data by alias
|
|
payload = {
|
|
"collectionName": alias_name,
|
|
"vector": preprocessing.normalize([np.array([random.random() for i in range(128)])])[0].tolist()
|
|
}
|
|
rsp = self.vector_client.vector_search(payload)
|
|
# query data by alias
|
|
payload = {
|
|
"collectionName": alias_name,
|
|
"filter": "book_id > 10"
|
|
}
|
|
rsp = self.vector_client.vector_query(payload)
|
|
|
|
# alter alias to another collection
|
|
new_name = gen_collection_name()
|
|
payload = {
|
|
"collectionName": new_name,
|
|
"metricType": "L2",
|
|
"dimension": 128,
|
|
}
|
|
rsp = client.collection_create(payload)
|
|
payload = {
|
|
"collectionName": new_name,
|
|
"aliasName": alias_name
|
|
}
|
|
rsp = self.alias_client.alter_alias(payload)
|
|
# describe alias
|
|
rsp = self.alias_client.describe_alias(alias_name)
|
|
assert rsp['data']["aliasName"] == alias_name
|
|
assert rsp['data']["collectionName"] == new_name
|
|
# query data by alias, expect no data
|
|
payload = {
|
|
"collectionName": alias_name,
|
|
"filter": "id > 0"
|
|
}
|
|
rsp = self.vector_client.vector_query(payload)
|
|
assert rsp['data'] == []
|