mirror of https://github.com/milvus-io/milvus.git
360 lines
9.6 KiB
Go
360 lines
9.6 KiB
Go
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package column
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/rand"
|
|
"testing"
|
|
|
|
"github.com/stretchr/testify/suite"
|
|
|
|
"github.com/milvus-io/milvus/client/v2/entity"
|
|
)
|
|
|
|
type ScalarSuite struct {
|
|
suite.Suite
|
|
}
|
|
|
|
func (s *ScalarSuite) TestBasic() {
|
|
s.Run("column_bool", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []bool{true, false}
|
|
column := NewColumnBool(name, data)
|
|
s.Equal(entity.FieldTypeBool, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
s.Equal(data, fd.GetScalars().GetBoolData().GetData())
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnBool)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeBool, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int8", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []int8{1, 2, 3}
|
|
column := NewColumnInt8(name, data)
|
|
s.Equal(entity.FieldTypeInt8, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
fdData := fd.GetScalars().GetIntData().GetData()
|
|
for i, row := range data {
|
|
s.EqualValues(row, fdData[i])
|
|
}
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnInt8)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeInt8, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int16", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []int16{1, 2, 3}
|
|
column := NewColumnInt16(name, data)
|
|
s.Equal(entity.FieldTypeInt16, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
fdData := fd.GetScalars().GetIntData().GetData()
|
|
for i, row := range data {
|
|
s.EqualValues(row, fdData[i])
|
|
}
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnInt16)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeInt16, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int32", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []int32{1, 2, 3}
|
|
column := NewColumnInt32(name, data)
|
|
s.Equal(entity.FieldTypeInt32, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
s.Equal(data, fd.GetScalars().GetIntData().GetData())
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnInt32)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeInt32, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int64", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []int64{1, 2, 3}
|
|
column := NewColumnInt64(name, data)
|
|
s.Equal(entity.FieldTypeInt64, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
s.Equal(data, fd.GetScalars().GetLongData().GetData())
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnInt64)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeInt64, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_float", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []float32{1.1, 2.2, 3.3}
|
|
column := NewColumnFloat(name, data)
|
|
s.Equal(entity.FieldTypeFloat, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
s.Equal(data, fd.GetScalars().GetFloatData().GetData())
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnFloat)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeFloat, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_double", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []float64{1.1, 2.2, 3.3}
|
|
column := NewColumnDouble(name, data)
|
|
s.Equal(entity.FieldTypeDouble, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
s.Equal(data, fd.GetScalars().GetDoubleData().GetData())
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnDouble)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeDouble, column.Type())
|
|
}
|
|
})
|
|
|
|
s.Run("column_varchar", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := []string{"a", "b", "c"}
|
|
column := NewColumnVarChar(name, data)
|
|
s.Equal(entity.FieldTypeVarChar, column.Type())
|
|
s.Equal(name, column.Name())
|
|
s.Equal(data, column.Data())
|
|
|
|
fd := column.FieldData()
|
|
s.Equal(name, fd.GetFieldName())
|
|
s.Equal(data, fd.GetScalars().GetStringData().GetData())
|
|
|
|
result, err := FieldDataColumn(fd, 0, -1)
|
|
s.NoError(err)
|
|
parsed, ok := result.(*ColumnVarChar)
|
|
if s.True(ok) {
|
|
s.Equal(name, parsed.Name())
|
|
s.Equal(data, parsed.Data())
|
|
s.Equal(entity.FieldTypeVarChar, column.Type())
|
|
}
|
|
})
|
|
}
|
|
|
|
func (s *ScalarSuite) TestSlice() {
|
|
n := 100
|
|
s.Run("column_bool", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]bool, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, rand.Int()%2 == 0)
|
|
}
|
|
column := NewColumnBool(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnBool)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int8", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]int8, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, int8(rand.Intn(math.MaxInt8)))
|
|
}
|
|
column := NewColumnInt8(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnInt8)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int16", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]int16, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, int16(rand.Intn(math.MaxInt16)))
|
|
}
|
|
column := NewColumnInt16(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnInt16)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int32", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]int32, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, rand.Int31())
|
|
}
|
|
column := NewColumnInt32(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnInt32)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_int64", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]int64, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, rand.Int63())
|
|
}
|
|
column := NewColumnInt64(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnInt64)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_float", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]float32, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, rand.Float32())
|
|
}
|
|
column := NewColumnFloat(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnFloat)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_double", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]float64, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, rand.Float64())
|
|
}
|
|
column := NewColumnDouble(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnDouble)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
|
|
s.Run("column_varchar", func() {
|
|
name := fmt.Sprintf("field_%d", rand.Intn(1000))
|
|
data := make([]string, 0, n)
|
|
for i := 0; i < 100; i++ {
|
|
data = append(data, fmt.Sprintf("%d", rand.Int()))
|
|
}
|
|
column := NewColumnVarChar(name, data)
|
|
|
|
l := rand.Intn(n)
|
|
sliced := column.Slice(0, l)
|
|
slicedColumn, ok := sliced.(*ColumnVarChar)
|
|
if s.True(ok) {
|
|
s.Equal(column.Type(), slicedColumn.Type())
|
|
s.Equal(data[:l], slicedColumn.Data())
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestScalarColumn(t *testing.T) {
|
|
suite.Run(t, new(ScalarSuite))
|
|
}
|