milvus/internal/core/unittest/test_growing.cpp

268 lines
11 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include "common/Types.h"
#include "knowhere/comp/index_param.h"
#include "segcore/SegmentGrowing.h"
#include "segcore/SegmentGrowingImpl.h"
#include "pb/schema.pb.h"
#include "test_utils/DataGen.h"
using namespace milvus::segcore;
using namespace milvus;
namespace pb = milvus::proto;
TEST(Growing, DeleteCount) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
auto segment = CreateGrowingSegment(schema, empty_index_meta);
int64_t c = 10;
auto offset = 0;
auto dataset = DataGen(schema, c);
auto pks = dataset.get_col<int64_t>(pk);
segment->Insert(offset,
c,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
Timestamp begin_ts = 100;
auto tss = GenTss(c, begin_ts);
auto del_pks = GenPKs(pks.begin(), pks.end());
auto status = segment->Delete(offset, c, del_pks.get(), tss.data());
ASSERT_TRUE(status.ok());
auto cnt = segment->get_deleted_count();
ASSERT_EQ(cnt, c);
}
TEST(Growing, RealCount) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
auto segment = CreateGrowingSegment(schema, empty_index_meta);
int64_t c = 10;
auto offset = 0;
auto dataset = DataGen(schema, c);
auto pks = dataset.get_col<int64_t>(pk);
segment->Insert(offset,
c,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
// no delete.
ASSERT_EQ(c, segment->get_real_count());
// delete half.
auto half = c / 2;
auto del_offset1 = 0;
auto del_ids1 = GenPKs(pks.begin(), pks.begin() + half);
auto del_tss1 = GenTss(half, c);
auto status =
segment->Delete(del_offset1, half, del_ids1.get(), del_tss1.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(c - half, segment->get_real_count());
// delete duplicate.
auto del_offset2 = segment->get_deleted_count();
ASSERT_EQ(del_offset2, half);
auto del_tss2 = GenTss(half, c + half);
status =
segment->Delete(del_offset2, half, del_ids1.get(), del_tss2.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(c - half, segment->get_real_count());
// delete all.
auto del_offset3 = segment->get_deleted_count();
ASSERT_EQ(del_offset3, half * 2);
auto del_ids3 = GenPKs(pks.begin(), pks.end());
auto del_tss3 = GenTss(c, c + half * 2);
status = segment->Delete(del_offset3, c, del_ids3.get(), del_tss3.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(0, segment->get_real_count());
}
class GrowingTest
: public ::testing::TestWithParam<
std::tuple</*index type*/ std::string, knowhere::MetricType>> {
public:
void
SetUp() override {
auto index_type = std::get<0>(GetParam());
auto metric_type = std::get<1>(GetParam());
if (index_type == knowhere::IndexEnum::INDEX_FAISS_IVFFLAT ||
index_type == knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC) {
data_type = DataType::VECTOR_FLOAT;
} else if (index_type ==
knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX ||
index_type == knowhere::IndexEnum::INDEX_SPARSE_WAND) {
data_type = DataType::VECTOR_SPARSE_FLOAT;
} else {
ASSERT_TRUE(false);
}
}
knowhere::MetricType metric_type;
std::string index_type;
DataType data_type;
};
INSTANTIATE_TEST_SUITE_P(
FloatGrowingTest,
GrowingTest,
::testing::Combine(
::testing::Values(knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC),
::testing::Values(knowhere::metric::L2,
knowhere::metric::IP,
knowhere::metric::COSINE)));
INSTANTIATE_TEST_SUITE_P(
SparseFloatGrowingTest,
GrowingTest,
::testing::Combine(
::testing::Values(knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX,
knowhere::IndexEnum::INDEX_SPARSE_WAND),
::testing::Values(knowhere::metric::IP)));
TEST_P(GrowingTest, FillData) {
auto schema = std::make_shared<Schema>();
auto bool_field = schema->AddDebugField("bool", DataType::BOOL);
auto int8_field = schema->AddDebugField("int8", DataType::INT8);
auto int16_field = schema->AddDebugField("int16", DataType::INT16);
auto int32_field = schema->AddDebugField("int32", DataType::INT32);
auto int64_field = schema->AddDebugField("int64", DataType::INT64);
auto float_field = schema->AddDebugField("float", DataType::FLOAT);
auto double_field = schema->AddDebugField("double", DataType::DOUBLE);
auto varchar_field = schema->AddDebugField("varchar", DataType::VARCHAR);
auto json_field = schema->AddDebugField("json", DataType::JSON);
auto int_array_field =
schema->AddDebugField("int_array", DataType::ARRAY, DataType::INT8);
auto long_array_field =
schema->AddDebugField("long_array", DataType::ARRAY, DataType::INT64);
auto bool_array_field =
schema->AddDebugField("bool_array", DataType::ARRAY, DataType::BOOL);
auto string_array_field = schema->AddDebugField(
"string_array", DataType::ARRAY, DataType::VARCHAR);
auto double_array_field = schema->AddDebugField(
"double_array", DataType::ARRAY, DataType::DOUBLE);
auto float_array_field =
schema->AddDebugField("float_array", DataType::ARRAY, DataType::FLOAT);
auto vec = schema->AddDebugField("embeddings", data_type, 128, metric_type);
schema->set_primary_field_id(int64_field);
std::map<std::string, std::string> index_params = {
{"index_type", index_type},
{"metric_type", metric_type},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_growing = CreateGrowingSegment(schema, metaPtr, 1, config);
auto segment = dynamic_cast<SegmentGrowingImpl*>(segment_growing.get());
int64_t per_batch = 1000;
int64_t n_batch = 3;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto bool_result =
segment->bulk_subscript(bool_field, ids_ds->GetIds(), num_inserted);
auto int8_result =
segment->bulk_subscript(int8_field, ids_ds->GetIds(), num_inserted);
auto int16_result = segment->bulk_subscript(
int16_field, ids_ds->GetIds(), num_inserted);
auto int32_result = segment->bulk_subscript(
int32_field, ids_ds->GetIds(), num_inserted);
auto int64_result = segment->bulk_subscript(
int64_field, ids_ds->GetIds(), num_inserted);
auto float_result = segment->bulk_subscript(
float_field, ids_ds->GetIds(), num_inserted);
auto double_result = segment->bulk_subscript(
double_field, ids_ds->GetIds(), num_inserted);
auto varchar_result = segment->bulk_subscript(
varchar_field, ids_ds->GetIds(), num_inserted);
auto json_result =
segment->bulk_subscript(json_field, ids_ds->GetIds(), num_inserted);
auto int_array_result = segment->bulk_subscript(
int_array_field, ids_ds->GetIds(), num_inserted);
auto long_array_result = segment->bulk_subscript(
long_array_field, ids_ds->GetIds(), num_inserted);
auto bool_array_result = segment->bulk_subscript(
bool_array_field, ids_ds->GetIds(), num_inserted);
auto string_array_result = segment->bulk_subscript(
string_array_field, ids_ds->GetIds(), num_inserted);
auto double_array_result = segment->bulk_subscript(
double_array_field, ids_ds->GetIds(), num_inserted);
auto float_array_result = segment->bulk_subscript(
float_array_field, ids_ds->GetIds(), num_inserted);
auto vec_result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
EXPECT_EQ(bool_result->scalars().bool_data().data_size(), num_inserted);
EXPECT_EQ(int8_result->scalars().int_data().data_size(), num_inserted);
EXPECT_EQ(int16_result->scalars().int_data().data_size(), num_inserted);
EXPECT_EQ(int32_result->scalars().int_data().data_size(), num_inserted);
EXPECT_EQ(int64_result->scalars().long_data().data_size(),
num_inserted);
EXPECT_EQ(float_result->scalars().float_data().data_size(),
num_inserted);
EXPECT_EQ(double_result->scalars().double_data().data_size(),
num_inserted);
EXPECT_EQ(varchar_result->scalars().string_data().data_size(),
num_inserted);
EXPECT_EQ(json_result->scalars().json_data().data_size(), num_inserted);
if (data_type == DataType::VECTOR_FLOAT) {
EXPECT_EQ(vec_result->vectors().float_vector().data_size(),
num_inserted * dim);
} else if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
EXPECT_EQ(
vec_result->vectors().sparse_float_vector().contents_size(),
num_inserted);
} else {
ASSERT_TRUE(false);
}
EXPECT_EQ(int_array_result->scalars().array_data().data_size(),
num_inserted);
EXPECT_EQ(long_array_result->scalars().array_data().data_size(),
num_inserted);
EXPECT_EQ(bool_array_result->scalars().array_data().data_size(),
num_inserted);
EXPECT_EQ(string_array_result->scalars().array_data().data_size(),
num_inserted);
EXPECT_EQ(double_array_result->scalars().array_data().data_size(),
num_inserted);
EXPECT_EQ(float_array_result->scalars().array_data().data_size(),
num_inserted);
}
}