mirror of https://github.com/milvus-io/milvus.git
161 lines
5.9 KiB
Python
161 lines
5.9 KiB
Python
import docker
|
|
import copy
|
|
from pymilvus import (
|
|
connections, FieldSchema, CollectionSchema, DataType,
|
|
Collection, list_collections,
|
|
)
|
|
|
|
all_index_types = ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "HNSW", "ANNOY", "RHNSW_FLAT", "RHNSW_PQ", "RHNSW_SQ",
|
|
"BIN_FLAT", "BIN_IVF_FLAT"]
|
|
|
|
default_index_params = [{"nlist": 128}, {"nlist": 128}, {"nlist": 128}, {"nlist": 128, "m": 16, "nbits": 8},
|
|
{"M": 48, "efConstruction": 500}, {"n_trees": 50}, {"M": 48, "efConstruction": 500},
|
|
{"M": 48, "efConstruction": 500, "PQM": 64}, {"M": 48, "efConstruction": 500}, {"nlist": 128},
|
|
{"nlist": 128}]
|
|
|
|
index_params_map = dict(zip(all_index_types, default_index_params))
|
|
|
|
|
|
def gen_search_param(index_type, metric_type="L2"):
|
|
search_params = []
|
|
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_SQ8H", "IVF_PQ"]:
|
|
for nprobe in [10]:
|
|
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
|
search_params.append(ivf_search_params)
|
|
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
|
|
for nprobe in [10]:
|
|
bin_search_params = {"metric_type": "HAMMING", "params": {"nprobe": nprobe}}
|
|
search_params.append(bin_search_params)
|
|
elif index_type in ["HNSW", "RHNSW_FLAT", "RHNSW_PQ", "RHNSW_SQ"]:
|
|
for ef in [64]:
|
|
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
|
|
search_params.append(hnsw_search_param)
|
|
elif index_type in ["NSG", "RNSG"]:
|
|
for search_length in [100]:
|
|
nsg_search_param = {"metric_type": metric_type, "params": {"search_length": search_length}}
|
|
search_params.append(nsg_search_param)
|
|
elif index_type == "ANNOY":
|
|
for search_k in [1000]:
|
|
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
|
|
search_params.append(annoy_search_param)
|
|
else:
|
|
print("Invalid index_type.")
|
|
raise Exception("Invalid index_type.")
|
|
return search_params
|
|
|
|
|
|
def list_containers():
|
|
client = docker.from_env()
|
|
containers = client.containers.list()
|
|
for c in containers:
|
|
if "milvus" in c.name:
|
|
print(c.image)
|
|
|
|
|
|
def get_collections():
|
|
print(f"\nList collections...")
|
|
col_list = list_collections()
|
|
print(f"collections_nums: {len(col_list)}")
|
|
# list entities if collections
|
|
for name in col_list:
|
|
c = Collection(name=name)
|
|
print(f"{name}: {c.num_entities}")
|
|
|
|
|
|
def create_collections_and_insert_data():
|
|
import random
|
|
import time
|
|
dim = 128
|
|
default_fields = [
|
|
FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
|
|
FieldSchema(name="random_value", dtype=DataType.DOUBLE),
|
|
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
|
|
]
|
|
default_schema = CollectionSchema(fields=default_fields, description="test collection")
|
|
print(f"\nList collections...")
|
|
print(list_collections())
|
|
for col_name in all_index_types:
|
|
print(f"\nCreate collection...")
|
|
collection = Collection(name=col_name, schema=default_schema)
|
|
# insert data
|
|
nb = 3000
|
|
vectors = [[i / nb for _ in range(dim)] for i in range(nb)]
|
|
collection.insert(
|
|
[
|
|
[i for i in range(nb)],
|
|
[float(random.randrange(-20, -10)) for _ in range(nb)],
|
|
vectors
|
|
]
|
|
)
|
|
print(f"collection name: {col_name}")
|
|
print("Get collection entities")
|
|
start_time = time.time()
|
|
print(f"collection entities: {collection.num_entities}")
|
|
end_time = time.time()
|
|
print("Get collection entities time = %.4fs" % (end_time - start_time))
|
|
print(f"\nList collections...")
|
|
print(list_collections())
|
|
|
|
|
|
def create_index():
|
|
# create index
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
col_list = list_collections()
|
|
print(f"\nCreate index...")
|
|
for name in col_list:
|
|
c = Collection(name=name)
|
|
|
|
print(name)
|
|
print(c)
|
|
index = copy.deepcopy(default_index)
|
|
index["index_type"] = name
|
|
index["params"] = index_params_map[name]
|
|
if name in ["BIN_FLAT", "BIN_IVF_FLAT"]:
|
|
index["metric_type"] = "HAMMING"
|
|
c.create_index(field_name="float_vector", index_params=index)
|
|
|
|
|
|
def load_and_search():
|
|
print("search data starts")
|
|
col_list = list_collections()
|
|
for name in col_list:
|
|
c = Collection(name=name)
|
|
print(f"collection name: {name}")
|
|
c.load()
|
|
topK = 5
|
|
vectors = [[0.0 for _ in range(128)] for _ in range(3000)]
|
|
index_type = name
|
|
search_params = gen_search_param(index_type)[0]
|
|
print(search_params)
|
|
# search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
|
|
|
import time
|
|
start_time = time.time()
|
|
print(f"\nSearch...")
|
|
# define output_fields of search result
|
|
res = c.search(
|
|
vectors[:1], "float_vector", search_params, topK,
|
|
"count > 500", output_fields=["count", "random_value"], timeout=20
|
|
)
|
|
end_time = time.time()
|
|
# show result
|
|
for hits in res:
|
|
for hit in hits:
|
|
# Get value of the random value field for search result
|
|
print(hit, hit.entity.get("random_value"))
|
|
ids = hits.ids
|
|
print(ids)
|
|
print("search latency = %.4fs" % (end_time - start_time))
|
|
t0 = time.time()
|
|
expr = "count in [2,4,6,8]"
|
|
output_fields = ["count", "random_value"]
|
|
res = c.query(expr, output_fields)
|
|
sorted_res = sorted(res, key=lambda k: k['count'])
|
|
for r in sorted_res:
|
|
print(r)
|
|
t1 = time.time()
|
|
print("query latency = %.4fs" % (t1 -t0))
|
|
# c.release()
|
|
print("###########")
|
|
print("search data ends")
|