milvus/tests/python_client/deploy/scripts/utils.py

161 lines
5.9 KiB
Python

import docker
import copy
from pymilvus import (
connections, FieldSchema, CollectionSchema, DataType,
Collection, list_collections,
)
all_index_types = ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "HNSW", "ANNOY", "RHNSW_FLAT", "RHNSW_PQ", "RHNSW_SQ",
"BIN_FLAT", "BIN_IVF_FLAT"]
default_index_params = [{"nlist": 128}, {"nlist": 128}, {"nlist": 128}, {"nlist": 128, "m": 16, "nbits": 8},
{"M": 48, "efConstruction": 500}, {"n_trees": 50}, {"M": 48, "efConstruction": 500},
{"M": 48, "efConstruction": 500, "PQM": 64}, {"M": 48, "efConstruction": 500}, {"nlist": 128},
{"nlist": 128}]
index_params_map = dict(zip(all_index_types, default_index_params))
def gen_search_param(index_type, metric_type="L2"):
search_params = []
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_SQ8H", "IVF_PQ"]:
for nprobe in [10]:
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
for nprobe in [10]:
bin_search_params = {"metric_type": "HAMMING", "params": {"nprobe": nprobe}}
search_params.append(bin_search_params)
elif index_type in ["HNSW", "RHNSW_FLAT", "RHNSW_PQ", "RHNSW_SQ"]:
for ef in [64]:
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type in ["NSG", "RNSG"]:
for search_length in [100]:
nsg_search_param = {"metric_type": metric_type, "params": {"search_length": search_length}}
search_params.append(nsg_search_param)
elif index_type == "ANNOY":
for search_k in [1000]:
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
search_params.append(annoy_search_param)
else:
print("Invalid index_type.")
raise Exception("Invalid index_type.")
return search_params
def list_containers():
client = docker.from_env()
containers = client.containers.list()
for c in containers:
if "milvus" in c.name:
print(c.image)
def get_collections():
print(f"\nList collections...")
col_list = list_collections()
print(f"collections_nums: {len(col_list)}")
# list entities if collections
for name in col_list:
c = Collection(name=name)
print(f"{name}: {c.num_entities}")
def create_collections_and_insert_data():
import random
import time
dim = 128
default_fields = [
FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="random_value", dtype=DataType.DOUBLE),
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")
print(f"\nList collections...")
print(list_collections())
for col_name in all_index_types:
print(f"\nCreate collection...")
collection = Collection(name=col_name, schema=default_schema)
# insert data
nb = 3000
vectors = [[i / nb for _ in range(dim)] for i in range(nb)]
collection.insert(
[
[i for i in range(nb)],
[float(random.randrange(-20, -10)) for _ in range(nb)],
vectors
]
)
print(f"collection name: {col_name}")
print("Get collection entities")
start_time = time.time()
print(f"collection entities: {collection.num_entities}")
end_time = time.time()
print("Get collection entities time = %.4fs" % (end_time - start_time))
print(f"\nList collections...")
print(list_collections())
def create_index():
# create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
col_list = list_collections()
print(f"\nCreate index...")
for name in col_list:
c = Collection(name=name)
print(name)
print(c)
index = copy.deepcopy(default_index)
index["index_type"] = name
index["params"] = index_params_map[name]
if name in ["BIN_FLAT", "BIN_IVF_FLAT"]:
index["metric_type"] = "HAMMING"
c.create_index(field_name="float_vector", index_params=index)
def load_and_search():
print("search data starts")
col_list = list_collections()
for name in col_list:
c = Collection(name=name)
print(f"collection name: {name}")
c.load()
topK = 5
vectors = [[0.0 for _ in range(128)] for _ in range(3000)]
index_type = name
search_params = gen_search_param(index_type)[0]
print(search_params)
# search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
import time
start_time = time.time()
print(f"\nSearch...")
# define output_fields of search result
res = c.search(
vectors[:1], "float_vector", search_params, topK,
"count > 500", output_fields=["count", "random_value"], timeout=20
)
end_time = time.time()
# show result
for hits in res:
for hit in hits:
# Get value of the random value field for search result
print(hit, hit.entity.get("random_value"))
ids = hits.ids
print(ids)
print("search latency = %.4fs" % (end_time - start_time))
t0 = time.time()
expr = "count in [2,4,6,8]"
output_fields = ["count", "random_value"]
res = c.query(expr, output_fields)
sorted_res = sorted(res, key=lambda k: k['count'])
for r in sorted_res:
print(r)
t1 = time.time()
print("query latency = %.4fs" % (t1 -t0))
# c.release()
print("###########")
print("search data ends")