mirror of https://github.com/milvus-io/milvus.git
95 lines
3.9 KiB
Python
95 lines
3.9 KiB
Python
import datetime
|
|
import pytest
|
|
|
|
from base.client_base import TestcaseBase
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel
|
|
from utils.util_log import test_log as log
|
|
from pymilvus import utility
|
|
|
|
|
|
rounds = 100
|
|
per_nb = 100000
|
|
default_field_name = ct.default_float_vec_field_name
|
|
default_index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}}
|
|
|
|
|
|
class TestLoad(TestcaseBase):
|
|
""" Test case of end to end"""
|
|
@pytest.mark.tags(CaseLabel.L3)
|
|
def test_load_default(self):
|
|
name = 'load_test_collection_1'
|
|
name2 = 'load_test_collection_2'
|
|
# create
|
|
# collection_w = self.init_collection_wrap(name=name)
|
|
# collection_w2 = self.init_collection_wrap(name=name2)
|
|
# assert collection_w.name == name
|
|
|
|
for i in range(50):
|
|
name = f"load_collection2_{i}"
|
|
self.init_collection_wrap(name=name)
|
|
log.debug(f"total collections: {len(utility.list_collections())}")
|
|
|
|
# # insert
|
|
# data = cf.gen_default_list_data(per_nb)
|
|
# log.debug(f"data len: {len(data[0])}")
|
|
# for i in range(rounds):
|
|
# t0 = datetime.datetime.now()
|
|
# ins_res, res = collection_w.insert(data, timeout=180)
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"round{i} insert: {len(ins_res.primary_keys)} entities in {tt}s")
|
|
# assert res # and per_nb == len(ins_res.primary_keys)
|
|
#
|
|
# t0 = datetime.datetime.now()
|
|
# ins_res2, res = collection_w2.insert(data, timeout=180)
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"round{i} insert2: {len(ins_res2.primary_keys)} entities in {tt}s")
|
|
# assert res
|
|
#
|
|
# # flush
|
|
# t0 = datetime.datetime.now()
|
|
# log.debug(f"current collection num_entities: {collection_w.num_entities}")
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"round{i} flush in {tt}")
|
|
#
|
|
# t0 = datetime.datetime.now()
|
|
# log.debug(f"current collection2 num_entities: {collection_w2.num_entities}")
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"round{i} flush2 in {tt}")
|
|
|
|
# index, res = collection_w.create_index(default_field_name, default_index_params, timeout=60)
|
|
# assert res
|
|
|
|
# # search
|
|
# collection_w.load()
|
|
# search_vectors = cf.gen_vectors(1, ct.default_dim)
|
|
# t0 = datetime.datetime.now()
|
|
# res_1, _ = collection_w.search(data=search_vectors,
|
|
# anns_field=ct.default_float_vec_field_name,
|
|
# param={"nprobe": 16}, limit=1)
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"assert search: {tt}")
|
|
# assert len(res_1) == 1
|
|
# # collection_w.release()
|
|
#
|
|
# # index
|
|
# collection_w.insert(cf.gen_default_dataframe_data(nb=5000))
|
|
# assert collection_w.num_entities == len(data[0]) + 5000
|
|
# _index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}}
|
|
# t0 = datetime.datetime.now()
|
|
# index, _ = collection_w.create_index(field_name=ct.default_float_vec_field_name,
|
|
# index_params=_index_params,
|
|
# name=cf.gen_unique_str())
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"assert index: {tt}")
|
|
# assert len(collection_w.indexes) == 1
|
|
#
|
|
# # query
|
|
# term_expr = f'{ct.default_int64_field_name} in [3001,4001,4999,2999]'
|
|
# t0 = datetime.datetime.now()
|
|
# res, _ = collection_w.query(term_expr)
|
|
# tt = datetime.datetime.now() - t0
|
|
# log.debug(f"assert query: {tt}")
|
|
# assert len(res) == 4
|