A cloud-native vector database, storage for next generation AI applications
 
 
 
 
 
 
Go to file
jinhai 4efcb76e45 Merge branch 'branch-0.3.0' of http://192.168.1.105:6060/jinhai/vecwise_engine into branch-0.3.0
Former-commit-id: 532c0c2a1b286da41c456c53df11c39fb6138afd
2019-06-19 16:36:59 +08:00
cpp Merge branch 'branch-0.3.0' of http://192.168.1.105:6060/jinhai/vecwise_engine into branch-0.3.0 2019-06-19 16:36:59 +08:00
docs
install
pyengine
python Merge branch 'branch-0.3.0' of http://192.168.1.105:6060/xuan.yang/vecwise_engine into branch-0.3.0 2019-06-13 17:55:46 +08:00
.dockerignore
.gitignore
CHANGELOGS.md
CONTRIBUTING.md
Dockerfile
INSTALL.md
LICENSE.md
README.md
environment.yaml
requirements.txt

README.md

Vecwise Engine Dev Guide

Install via Conda

  1. Install Miniconda first

    • bash vecwise_engine/install/miniconda.sh
  2. Create environment

    • conda env create -f vecwise_engine/environment.yaml
  3. Test your installation

Install via Docker

  1. Install nvidia-docker

  2. docker build -t cuda9.0/VecEngine .

  3. docker run -it cuda9.0/VecEngine bash

Create Database

  1. Install MySQL

    • sudo apt-get update
    • sudo apt-get install mariadb-server
  2. Create user and database:

    • create user vecwise;
    • create database vecdata;
    • grant all privileges on vecdata.* to 'vecwise'@'%';
    • flush privileges;
  3. Create table:

    • cd vecwise_engine/pyengine && python manager.py create_all