mirror of https://github.com/milvus-io/milvus.git
748 lines
22 KiB
Python
748 lines
22 KiB
Python
import os
|
|
import sys
|
|
import random
|
|
import pdb
|
|
import string
|
|
import struct
|
|
import logging
|
|
import time, datetime
|
|
import copy
|
|
import numpy as np
|
|
from sklearn import preprocessing
|
|
from milvus import Milvus, IndexType, MetricType, DataType
|
|
|
|
port = 19530
|
|
epsilon = 0.000001
|
|
default_flush_interval = 1
|
|
big_flush_interval = 1000
|
|
dimension = 128
|
|
segment_size = 10
|
|
|
|
# TODO:
|
|
all_index_types = [
|
|
"FLAT",
|
|
"IVF_FLAT",
|
|
"IVF_SQ8",
|
|
"IVF_SQ8_HYBRID",
|
|
"IVF_PQ",
|
|
"HNSW",
|
|
# "NSG",
|
|
"ANNOY",
|
|
"BIN_FLAT",
|
|
"BIN_IVF_FLAT"
|
|
]
|
|
|
|
|
|
default_index_params = [
|
|
{"nlist": 1024},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024, "m": 16},
|
|
{"M": 48, "efConstruction": 500},
|
|
# {"search_length": 50, "out_degree": 40, "candidate_pool_size": 100, "knng": 50},
|
|
{"n_trees": 4},
|
|
{"nlist": 1024},
|
|
{"nlist": 1024}
|
|
]
|
|
|
|
|
|
def index_cpu_not_support():
|
|
return ["IVF_SQ8_HYBRID"]
|
|
|
|
|
|
def binary_support():
|
|
return ["BIN_FLAT", "BIN_IVF_FLAT"]
|
|
|
|
|
|
def delete_support():
|
|
return ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_SQ8_HYBRID", "IVF_PQ"]
|
|
|
|
|
|
def ivf():
|
|
return ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_SQ8_HYBRID", "IVF_PQ"]
|
|
|
|
|
|
def l2(x, y):
|
|
return np.linalg.norm(np.array(x) - np.array(y))
|
|
|
|
|
|
def ip(x, y):
|
|
return np.inner(np.array(x), np.array(y))
|
|
|
|
|
|
def jaccard(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
|
|
|
|
|
def hamming(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return np.bitwise_xor(x, y).sum()
|
|
|
|
|
|
def tanimoto(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return -np.log2(np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()))
|
|
|
|
|
|
def substructure(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
|
|
|
|
|
|
def superstructure(x, y):
|
|
x = np.asarray(x, np.bool)
|
|
y = np.asarray(y, np.bool)
|
|
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
|
|
|
|
|
|
def get_milvus(host, port, uri=None, handler=None, **kwargs):
|
|
if handler is None:
|
|
handler = "GRPC"
|
|
try_connect = kwargs.get("try_connect", True)
|
|
if uri is not None:
|
|
milvus = Milvus(uri=uri, handler=handler, try_connect=try_connect)
|
|
else:
|
|
milvus = Milvus(host=host, port=port, handler=handler, try_connect=try_connect)
|
|
return milvus
|
|
|
|
|
|
def disable_flush(connect):
|
|
connect.set_config("storage", "auto_flush_interval", big_flush_interval)
|
|
|
|
|
|
def enable_flush(connect):
|
|
# reset auto_flush_interval=1
|
|
connect.set_config("storage", "auto_flush_interval", default_flush_interval)
|
|
config_value = connect.get_config("storage", "auto_flush_interval")
|
|
assert config_value == str(default_flush_interval)
|
|
|
|
|
|
def gen_inaccuracy(num):
|
|
return num / 255.0
|
|
|
|
|
|
def gen_vectors(num, dim, is_normal=False):
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(num)]
|
|
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
|
|
return vectors.tolist()
|
|
|
|
|
|
# def gen_vectors(num, dim, seed=np.random.RandomState(1234), is_normal=False):
|
|
# xb = seed.rand(num, dim).astype("float32")
|
|
# xb = preprocessing.normalize(xb, axis=1, norm='l2')
|
|
# return xb.tolist()
|
|
|
|
|
|
def gen_binary_vectors(num, dim):
|
|
raw_vectors = []
|
|
binary_vectors = []
|
|
for i in range(num):
|
|
raw_vector = [random.randint(0, 1) for i in range(dim)]
|
|
raw_vectors.append(raw_vector)
|
|
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
|
return raw_vectors, binary_vectors
|
|
|
|
|
|
def gen_binary_sub_vectors(vectors, length):
|
|
raw_vectors = []
|
|
binary_vectors = []
|
|
dim = len(vectors[0])
|
|
for i in range(length):
|
|
raw_vector = [0 for i in range(dim)]
|
|
vector = vectors[i]
|
|
for index, j in enumerate(vector):
|
|
if j == 1:
|
|
raw_vector[index] = 1
|
|
raw_vectors.append(raw_vector)
|
|
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
|
return raw_vectors, binary_vectors
|
|
|
|
|
|
def gen_binary_super_vectors(vectors, length):
|
|
raw_vectors = []
|
|
binary_vectors = []
|
|
dim = len(vectors[0])
|
|
for i in range(length):
|
|
cnt_1 = np.count_nonzero(vectors[i])
|
|
raw_vector = [1 for i in range(dim)]
|
|
raw_vectors.append(raw_vector)
|
|
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
|
return raw_vectors, binary_vectors
|
|
|
|
|
|
def gen_int_attr(row_num):
|
|
return [random.randint(0, 255) for _ in range(row_num)]
|
|
|
|
|
|
def gen_float_attr(row_num):
|
|
return [random.uniform(0, 255) for _ in range(row_num)]
|
|
|
|
|
|
def gen_unique_str(str_value=None):
|
|
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
|
|
return "test_" + prefix if str_value is None else str_value + "_" + prefix
|
|
|
|
|
|
def gen_single_filter_fields():
|
|
fields = []
|
|
for data_type in DataType:
|
|
if data_type in [DataType.INT8, DataType.INT16, DataType.INT32, DataType.INT64, DataType.FLOAT, DataType.DOUBLE]:
|
|
fields.append({"field": data_type.name, "type": data_type})
|
|
return fields
|
|
|
|
|
|
def gen_single_vector_fields():
|
|
fields = []
|
|
for metric_type in ['HAMMING', 'IP', 'JACCARD', 'L2', 'SUBSTRUCTURE', 'SUPERSTRUCTURE', 'TANIMOTO']:
|
|
for data_type in [DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR]:
|
|
if metric_type in ["L2", "IP"] and data_type == DataType.BINARY_VECTOR:
|
|
continue
|
|
if metric_type not in ["L2", "IP"] and data_type == DataType.FLOAT_VECTOR:
|
|
continue
|
|
field = {"field": data_type.name, "type": data_type, "params": {"metric_type": metric_type, "dimension": dimension}}
|
|
fields.append(field)
|
|
return fields
|
|
|
|
|
|
def gen_default_fields():
|
|
default_fields = {
|
|
"fields": [
|
|
{"field": "int8", "type": DataType.INT8},
|
|
{"field": "int64", "type": DataType.INT64},
|
|
{"field": "float", "type": DataType.FLOAT},
|
|
{"field": "vector", "type": DataType.FLOAT_VECTOR, "params": {"metric_type": "L2", "dimension": dimension}}
|
|
],
|
|
"segment_size": segment_size
|
|
}
|
|
return default_fields
|
|
|
|
|
|
def gen_entities(nb, is_normal=False):
|
|
vectors = gen_vectors(nb, dimension, is_normal)
|
|
entities = [
|
|
{"field": "int8", "type": DataType.INT8, "values": [1 for i in range(nb)]},
|
|
{"field": "int64", "type": DataType.INT64, "values": [2 for i in range(nb)]},
|
|
{"field": "float", "type": DataType.FLOAT, "values": [3.0 for i in range(nb)]},
|
|
{"field": "vector", "type": DataType.FLOAT_VECTOR, "values": vectors}
|
|
]
|
|
return entities
|
|
|
|
|
|
def gen_binary_entities(nb):
|
|
raw_vectors, vectors = gen_binary_vectors(nb, dimension)
|
|
entities = [
|
|
{"field": "int8", "type": DataType.INT8, "values": [1 for i in range(nb)]},
|
|
{"field": "int64", "type": DataType.INT64, "values": [2 for i in range(nb)]},
|
|
{"field": "float", "type": DataType.FLOAT, "values": [3.0 for i in range(nb)]},
|
|
{"field": "binary_vector", "type": DataType.BINARY_VECTOR, "values": vectors}
|
|
]
|
|
return raw_vectors, entities
|
|
|
|
|
|
def gen_entities_by_fields(fields, nb, dimension):
|
|
entities = []
|
|
for field in fields:
|
|
if field["type"] in [DataType.INT8, DataType.INT16, DataType.INT32, DataType.INT64]:
|
|
field_value = [1 for i in range(nb)]
|
|
elif field["type"] in [DataType.FLOAT, DataType.DOUBLE]:
|
|
field_value = [3.0 for i in range(nb)]
|
|
elif field["type"] == DataType.BINARY_VECTOR:
|
|
field_value = gen_binary_vectors(nb, dimension)[1]
|
|
elif field["type"] == DataType.FLOAT_VECTOR:
|
|
field_value = gen_vectors(nb, dimension)
|
|
field.update({"values": field_value})
|
|
entities.append(field)
|
|
return entities
|
|
|
|
|
|
def assert_equal_entity(a, b):
|
|
pass
|
|
|
|
|
|
def gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params={"nprobe": 10}):
|
|
query_vectors = entities[-1]["values"][:nq]
|
|
query = {
|
|
"bool": {
|
|
"must": [
|
|
{"vector": {field_name: {"topk": top_k, "query": query_vectors, "params": search_params}}}
|
|
]
|
|
}
|
|
}
|
|
return query, query_vectors
|
|
|
|
|
|
def gen_query_vectors_rand_entities(field_name, entities, top_k, nq, search_params={"nprobe": 10}):
|
|
dimension = len(entities[-1]["values"][0])
|
|
query_vectors = gen_vectors(nq, dimension)
|
|
query = {
|
|
"bool": {
|
|
"must": [
|
|
{"vector": {field_name: {"topk": top_k, "query": query_vectors, "params": search_params}}}
|
|
]
|
|
}
|
|
}
|
|
return query, query_vectors
|
|
|
|
|
|
|
|
def add_field(entities):
|
|
nb = len(entities[0]["values"])
|
|
field = {
|
|
"field": gen_unique_str(),
|
|
"type": DataType.INT8,
|
|
"values": [1 for i in range(nb)]
|
|
}
|
|
entities.append(field)
|
|
return entities
|
|
|
|
|
|
def add_vector_field(entities, is_normal=False):
|
|
nb = len(entities[0]["values"])
|
|
vectors = gen_vectors(nb, dimension, is_normal)
|
|
field = {
|
|
"field": gen_unique_str(),
|
|
"type": DataType.FLOAT_VECTOR,
|
|
"values": vectors
|
|
}
|
|
entities.append(field)
|
|
return entities
|
|
|
|
|
|
def update_fields_metric_type(fields, metric_type):
|
|
tmp_fields = copy.deepcopy(fields)
|
|
if metric_type in ["L2", "IP"]:
|
|
tmp_fields["fields"][-1]["type"] = DataType.FLOAT_VECTOR
|
|
else:
|
|
tmp_fields["fields"][-1]["type"] = DataType.BINARY_VECTOR
|
|
tmp_fields["fields"][-1]["params"]["metric_type"] = metric_type
|
|
return tmp_fields
|
|
|
|
|
|
def remove_field(entities):
|
|
del entities[0]
|
|
return entities
|
|
|
|
|
|
def remove_vector_field(entities):
|
|
del entities[-1]
|
|
return entities
|
|
|
|
|
|
def update_field_name(entities, old_name, new_name):
|
|
for item in entities:
|
|
if item["field"] == old_name:
|
|
item["field"] = new_name
|
|
return entities
|
|
|
|
|
|
def update_field_type(entities, old_name, new_name):
|
|
for item in entities:
|
|
if item["field"] == old_name:
|
|
item["type"] = new_name
|
|
return entities
|
|
|
|
|
|
def update_field_value(entities, old_type, new_value):
|
|
for item in entities:
|
|
if item["type"] == old_type:
|
|
for i in item["values"]:
|
|
item["values"][i] = new_value
|
|
return entities
|
|
|
|
|
|
def add_vector_field(nb, dimension=dimension):
|
|
field_name = gen_unique_str()
|
|
field = {
|
|
"field": field_name,
|
|
"type": DataType.FLOAT_VECTOR,
|
|
"values": gen_vectors(nb, dimension)
|
|
}
|
|
return field_name
|
|
|
|
|
|
def gen_segment_sizes():
|
|
sizes = [
|
|
1,
|
|
2,
|
|
1024,
|
|
4096
|
|
]
|
|
return sizes
|
|
|
|
|
|
def gen_invalid_ips():
|
|
ips = [
|
|
# "255.0.0.0",
|
|
# "255.255.0.0",
|
|
# "255.255.255.0",
|
|
# "255.255.255.255",
|
|
"127.0.0",
|
|
# "123.0.0.2",
|
|
"12-s",
|
|
" ",
|
|
"12 s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"中文",
|
|
"a".join("a" for _ in range(256))
|
|
]
|
|
return ips
|
|
|
|
|
|
def gen_invalid_uris():
|
|
ip = None
|
|
uris = [
|
|
" ",
|
|
"中文",
|
|
# invalid protocol
|
|
# "tc://%s:%s" % (ip, port),
|
|
# "tcp%s:%s" % (ip, port),
|
|
|
|
# # invalid port
|
|
# "tcp://%s:100000" % ip,
|
|
# "tcp://%s: " % ip,
|
|
# "tcp://%s:19540" % ip,
|
|
# "tcp://%s:-1" % ip,
|
|
# "tcp://%s:string" % ip,
|
|
|
|
# invalid ip
|
|
"tcp:// :19530",
|
|
# "tcp://123.0.0.1:%s" % port,
|
|
"tcp://127.0.0:19530",
|
|
# "tcp://255.0.0.0:%s" % port,
|
|
# "tcp://255.255.0.0:%s" % port,
|
|
# "tcp://255.255.255.0:%s" % port,
|
|
# "tcp://255.255.255.255:%s" % port,
|
|
"tcp://\n:19530",
|
|
]
|
|
return uris
|
|
|
|
|
|
def gen_invalid_strs():
|
|
strings = [
|
|
1,
|
|
[1],
|
|
None,
|
|
"12-s",
|
|
" ",
|
|
# "",
|
|
# None,
|
|
"12 s",
|
|
"BB。A",
|
|
"c|c",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return strings
|
|
|
|
|
|
def gen_invalid_field_types():
|
|
field_types = [
|
|
# 1,
|
|
"=c",
|
|
# 0,
|
|
None,
|
|
"",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return field_types
|
|
|
|
|
|
def gen_invalid_metric_types():
|
|
metric_types = [
|
|
1,
|
|
"=c",
|
|
0,
|
|
None,
|
|
"",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return metric_types
|
|
|
|
|
|
# TODO:
|
|
def gen_invalid_ints():
|
|
top_ks = [
|
|
# 1.0,
|
|
None,
|
|
"stringg",
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return top_ks
|
|
|
|
|
|
def gen_invalid_params():
|
|
params = [
|
|
9999999999,
|
|
-1,
|
|
# None,
|
|
[1,2,3],
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文"
|
|
]
|
|
return params
|
|
|
|
|
|
def gen_invalid_vectors():
|
|
invalid_vectors = [
|
|
"1*2",
|
|
[],
|
|
[1],
|
|
[1,2],
|
|
[" "],
|
|
['a'],
|
|
[None],
|
|
None,
|
|
(1,2),
|
|
{"a": 1},
|
|
" ",
|
|
"",
|
|
"String",
|
|
"12-s",
|
|
"BB。A",
|
|
" siede ",
|
|
"(mn)",
|
|
"pip+",
|
|
"=c",
|
|
"中文",
|
|
"a".join("a" for i in range(256))
|
|
]
|
|
return invalid_vectors
|
|
|
|
|
|
def gen_invaild_search_params():
|
|
invalid_search_key = 100
|
|
search_params = []
|
|
for index_type in all_index_types:
|
|
if index_type == "FLAT":
|
|
continue
|
|
search_params.append({"index_type": index_type, "search_params": {"invalid_key": invalid_search_key}})
|
|
if index_type in delete_support():
|
|
for nprobe in gen_invalid_params():
|
|
ivf_search_params = {"index_type": index_type, "search_params": {"nprobe": nprobe}}
|
|
search_params.append(ivf_search_params)
|
|
elif index_type == "HNSW":
|
|
for ef in gen_invalid_params():
|
|
hnsw_search_param = {"index_type": index_type, "search_params": {"ef": ef}}
|
|
search_params.append(hnsw_search_param)
|
|
elif index_type == "NSG":
|
|
for search_length in gen_invalid_params():
|
|
nsg_search_param = {"index_type": index_type, "search_params": {"search_length": search_length}}
|
|
search_params.append(nsg_search_param)
|
|
search_params.append({"index_type": index_type, "search_params": {"invalid_key": 100}})
|
|
elif index_type == "ANNOY":
|
|
for search_k in gen_invalid_params():
|
|
if isinstance(search_k, int):
|
|
continue
|
|
annoy_search_param = {"index_type": index_type, "search_params": {"search_k": search_k}}
|
|
search_params.append(annoy_search_param)
|
|
return search_params
|
|
|
|
|
|
def gen_invalid_index():
|
|
index_params = []
|
|
for index_type in gen_invalid_strs():
|
|
index_param = {"index_type": index_type, "params": {"nlist": 1024}}
|
|
index_params.append(index_param)
|
|
for nlist in gen_invalid_params():
|
|
index_param = {"index_type": "IVF_FLAT", "params": {"nlist": nlist}}
|
|
index_params.append(index_param)
|
|
for M in gen_invalid_params():
|
|
index_param = {"index_type": "HNSW", "params": {"M": M, "efConstruction": 100}}
|
|
index_params.append(index_param)
|
|
for efConstruction in gen_invalid_params():
|
|
index_param = {"index_type": "HNSW", "params": {"M": 16, "efConstruction": efConstruction}}
|
|
index_params.append(index_param)
|
|
for search_length in gen_invalid_params():
|
|
index_param = {"index_type": "NSG",
|
|
"params": {"search_length": search_length, "out_degree": 40, "candidate_pool_size": 50,
|
|
"knng": 100}}
|
|
index_params.append(index_param)
|
|
for out_degree in gen_invalid_params():
|
|
index_param = {"index_type": "NSG",
|
|
"params": {"search_length": 100, "out_degree": out_degree, "candidate_pool_size": 50,
|
|
"knng": 100}}
|
|
index_params.append(index_param)
|
|
for candidate_pool_size in gen_invalid_params():
|
|
index_param = {"index_type": "NSG", "params": {"search_length": 100, "out_degree": 40,
|
|
"candidate_pool_size": candidate_pool_size,
|
|
"knng": 100}}
|
|
index_params.append(index_param)
|
|
index_params.append({"index_type": "IVF_FLAT", "params": {"invalid_key": 1024}})
|
|
index_params.append({"index_type": "HNSW", "params": {"invalid_key": 16, "efConstruction": 100}})
|
|
index_params.append({"index_type": "NSG",
|
|
"params": {"invalid_key": 100, "out_degree": 40, "candidate_pool_size": 300,
|
|
"knng": 100}})
|
|
for invalid_n_trees in gen_invalid_params():
|
|
index_params.append({"index_type": "ANNOY", "params": {"n_trees": invalid_n_trees}})
|
|
|
|
return index_params
|
|
|
|
|
|
def gen_index():
|
|
nlists = [1, 1024, 16384]
|
|
pq_ms = [128, 64, 32, 16, 8, 4]
|
|
Ms = [5, 24, 48]
|
|
efConstructions = [100, 300, 500]
|
|
search_lengths = [10, 100, 300]
|
|
out_degrees = [5, 40, 300]
|
|
candidate_pool_sizes = [50, 100, 300]
|
|
knngs = [5, 100, 300]
|
|
|
|
index_params = []
|
|
for index_type in all_index_types:
|
|
if index_type in ["FLAT", "BIN_FLAT", "BIN_IVF_FLAT"]:
|
|
index_params.append({"index_type": index_type, "index_param": {"nlist": 1024}})
|
|
elif index_type in ["IVF_FLAT", "IVF_SQ8", "IVF_SQ8_HYBRID"]:
|
|
ivf_params = [{"index_type": index_type, "index_param": {"nlist": nlist}} \
|
|
for nlist in nlists]
|
|
index_params.extend(ivf_params)
|
|
elif index_type == "IVF_PQ":
|
|
IVFPQ_params = [{"index_type": index_type, "index_param": {"nlist": nlist, "m": m}} \
|
|
for nlist in nlists \
|
|
for m in pq_ms]
|
|
index_params.extend(IVFPQ_params)
|
|
elif index_type == "HNSW":
|
|
hnsw_params = [{"index_type": index_type, "index_param": {"M": M, "efConstruction": efConstruction}} \
|
|
for M in Ms \
|
|
for efConstruction in efConstructions]
|
|
index_params.extend(hnsw_params)
|
|
elif index_type == "NSG":
|
|
nsg_params = [{"index_type": index_type,
|
|
"index_param": {"search_length": search_length, "out_degree": out_degree,
|
|
"candidate_pool_size": candidate_pool_size, "knng": knng}} \
|
|
for search_length in search_lengths \
|
|
for out_degree in out_degrees \
|
|
for candidate_pool_size in candidate_pool_sizes \
|
|
for knng in knngs]
|
|
index_params.extend(nsg_params)
|
|
|
|
return index_params
|
|
|
|
|
|
def gen_simple_index():
|
|
index_params = []
|
|
for i in range(len(all_index_types)):
|
|
if all_index_types[i] in binary_support():
|
|
continue
|
|
dic = {"index_type": all_index_types[i]}
|
|
dic.update(default_index_params[i])
|
|
index_params.append(dic)
|
|
return index_params
|
|
|
|
|
|
def gen_binary_index():
|
|
index_params = []
|
|
for i in range(len(all_index_types)):
|
|
if all_index_types[i] in binary_support():
|
|
dic = {"index_type": all_index_types[i]}
|
|
dic.update(default_index_params[i])
|
|
index_params.append(dic)
|
|
return index_params
|
|
|
|
|
|
def get_search_param(index_type):
|
|
if index_type in ivf() or index_type in binary_support():
|
|
return {"nprobe": 32}
|
|
elif index_type == "HNSW":
|
|
return {"ef": 64}
|
|
elif index_type == "NSG":
|
|
return {"search_length": 100}
|
|
elif index_type == "ANNOY":
|
|
return {"search_k": 100}
|
|
else:
|
|
logging.getLogger().info("Invalid index_type.")
|
|
|
|
|
|
def assert_equal_vector(v1, v2):
|
|
if len(v1) != len(v2):
|
|
assert False
|
|
for i in range(len(v1)):
|
|
assert abs(v1[i] - v2[i]) < epsilon
|
|
|
|
|
|
def restart_server(helm_release_name):
|
|
res = True
|
|
timeout = 120
|
|
from kubernetes import client, config
|
|
client.rest.logger.setLevel(logging.WARNING)
|
|
|
|
namespace = "milvus"
|
|
# service_name = "%s.%s.svc.cluster.local" % (helm_release_name, namespace)
|
|
config.load_kube_config()
|
|
v1 = client.CoreV1Api()
|
|
pod_name = None
|
|
# config_map_names = v1.list_namespaced_config_map(namespace, pretty='true')
|
|
# body = {"replicas": 0}
|
|
pods = v1.list_namespaced_pod(namespace)
|
|
for i in pods.items:
|
|
if i.metadata.name.find(helm_release_name) != -1 and i.metadata.name.find("mysql") == -1:
|
|
pod_name = i.metadata.name
|
|
break
|
|
# v1.patch_namespaced_config_map(config_map_name, namespace, body, pretty='true')
|
|
# status_res = v1.read_namespaced_service_status(helm_release_name, namespace, pretty='true')
|
|
# print(status_res)
|
|
if pod_name is not None:
|
|
try:
|
|
v1.delete_namespaced_pod(pod_name, namespace)
|
|
except Exception as e:
|
|
logging.error(str(e))
|
|
logging.error("Exception when calling CoreV1Api->delete_namespaced_pod")
|
|
res = False
|
|
return res
|
|
time.sleep(5)
|
|
# check if restart successfully
|
|
pods = v1.list_namespaced_pod(namespace)
|
|
for i in pods.items:
|
|
pod_name_tmp = i.metadata.name
|
|
if pod_name_tmp.find(helm_release_name) != -1:
|
|
logging.debug(pod_name_tmp)
|
|
start_time = time.time()
|
|
while time.time() - start_time > timeout:
|
|
status_res = v1.read_namespaced_pod_status(pod_name_tmp, namespace, pretty='true')
|
|
if status_res.status.phase == "Running":
|
|
break
|
|
time.sleep(1)
|
|
if time.time() - start_time > timeout:
|
|
logging.error("Restart pod: %s timeout" % pod_name_tmp)
|
|
res = False
|
|
return res
|
|
else:
|
|
logging.error("Pod: %s not found" % helm_release_name)
|
|
res = False
|
|
return res
|