milvus/tests/milvus_python_test/entity/test_search_by_id.py

531 lines
22 KiB
Python
Executable File

# import pdb
# import copy
# import struct
# import pytest
# import threading
# import datetime
# import logging
# from time import sleep
# from multiprocessing import Process
# import numpy
# import sklearn.preprocessing
# from milvus import Milvus, IndexType, MetricType
# from utils import *
#
# dim = 128
# collection_id = "test_search_by_id"
# nb = 6000
# vectors = gen_vectors(nb, dim)
# vectors = sklearn.preprocessing.normalize(vectors, axis=1, norm='l2')
# vectors = vectors.tolist()
# nprobe = 1
# epsilon = 0.001
# tag = "overallpaper"
# top_k = 5
# nq = 10
# nprobe = 1
# non_exist_id = [9527]
# raw_vectors, binary_vectors = gen_binary_vectors(6000, dim)
#
#
# class TestSearchBase:
# # @pytest.fixture(scope="function", autouse=True)
# # def skip_check(self, connect):
# # if str(connect._cmd("mode")[1]) == "CPU":
# # if request.param["index_type"] in index_cpu_not_support():
# # pytest.skip("sq8h not support in CPU mode")
# # if str(connect._cmd("mode")[1]) == "GPU":
# # if request.param["index_type"] == IndexType.IVF_PQ:
# # pytest.skip("ivfpq not support in GPU mode")
#
# def init_data(self, connect, collection, nb=6000):
# '''
# Generate vectors and add it in collection, before search vectors
# '''
# global vectors
# if nb == 6000:
# insert = vectors
# else:
# insert = gen_vectors(nb, dim)
# status, ids = connect.insert(collection, insert)
# connect.flush([collection])
# return insert, ids
#
# def init_data_binary(self, connect, collection, nb=6000):
# '''
# Generate vectors and add it in collection, before search vectors
# '''
# global binary_vectors
# if nb == 6000:
# insert = binary_vectors
# else:
# insert = gen_binary_vectors(nb, dim)
# status, ids = connect.insert(collection, insert)
# connect.flush([collection])
# return insert, ids
#
# def init_data_no_flush(self, connect, collection, nb=6000):
# global vectors
# if nb == 6000:
# insert = vectors
# else:
# insert = gen_vectors(nb, dim)
# status, ids = connect.insert(collection, insert)
# return insert, ids
#
# def init_data_ids(self, connect, collection, nb=6000):
# global vectors
# my_ids = [i for i in range(nb)]
# if nb == 6000:
# insert = vectors
# else:
# insert = gen_vectors(nb, dim)
# status, ids = connect.insert(collection, insert, my_ids)
# connect.flush([collection])
# return insert, ids
#
# def init_data_partition(self, connect, collection, partition_tag, nb=6000):
# '''
# Generate vectors and add it in collection, before search vectors
# '''
# global vectors
# if nb == 6000:
# insert = vectors
# else:
# insert = gen_vectors(nb, dim)
# insert = sklearn.preprocessing.normalize(insert, axis=1, norm='l2')
# insert = insert.tolist()
# status, ids = connect.insert(collection, insert, partition_tag=partition_tag)
# assert status.OK()
# connect.flush([collection])
# return insert, ids
#
# @pytest.fixture(
# scope="function",
# params=gen_simple_index()
# )
# def get_simple_index(self, request, connect):
# if str(connect._cmd("mode")[1]) == "CPU":
# if request.param["index_type"] == IndexType.IVFSQ8H:
# pytest.skip("sq8h not support in CPU mode")
# if str(connect._cmd("mode")[1]) == "GPU":
# if request.param["index_type"] == IndexType.IVF_PQ:
# pytest.skip("ivfpq not support in GPU mode")
# return request.param
#
# @pytest.fixture(
# scope="function",
# params=gen_simple_index()
# )
# def get_jaccard_index(self, request, connect):
# logging.getLogger().info(request.param)
# if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT:
# return request.param
# else:
# pytest.skip("Skip index Temporary")
#
# @pytest.fixture(
# scope="function",
# params=gen_simple_index()
# )
# def get_hamming_index(self, request, connect):
# logging.getLogger().info(request.param)
# if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT:
# return request.param
# else:
# pytest.skip("Skip index Temporary")
#
# @pytest.fixture(
# scope="function",
# params=gen_simple_index()
# )
# def get_structure_index(self, request, connect):
# logging.getLogger().info(request.param)
# if request.param["index_type"] == IndexType.FLAT:
# return request.param
# else:
# pytest.skip("Skip index Temporary")
#
# """
# generate top-k params
# """
# @pytest.fixture(
# scope="function",
# params=[1, 2048]
# )
# def get_top_k(self, request):
# yield request.param
#
# def test_search_flat_normal_topk(self, connect, collection, get_top_k):
# '''
# target: test basic search fuction, all the search params is corrent, change top-k value
# method: search with the given vector id, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# top_k = get_top_k
# vectors, ids = self.init_data(connect, collection)
# query_ids = [ids[0]]
# status, result = connect.search_by_id(collection, query_ids, top_k, params={})
# assert status.OK()
# assert len(result[0]) == min(len(vectors), top_k)
# assert result[0][0].distance <= epsilon
# assert check_result(result[0], ids[0])
#
# def test_search_flat_same_ids(self, connect, collection):
# '''
# target: test basic search fuction, all the search params is corrent, change top-k value
# method: search with the given vector id, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# vectors, ids = self.init_data(connect, collection)
# query_ids = [ids[0], ids[0]]
# status, result = connect.search_by_id(collection, query_ids, top_k, params={})
# assert status.OK()
# assert len(result[0]) == min(len(vectors), top_k)
# assert result[0][0].distance <= epsilon
# assert result[1][0].distance <= epsilon
# assert check_result(result[0], ids[0])
# assert check_result(result[1], ids[0])
#
# def test_search_flat_max_topk(self, connect, collection):
# '''
# target: test basic search fuction, all the search params is corrent, change top-k value
# method: search with the given vector id, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# top_k = 2049
# vectors, ids = self.init_data(connect, collection)
# query_ids = [ids[0]]
# status, result = connect.search_by_id(collection, query_ids, top_k, params={})
# assert not status.OK()
#
# def test_search_id_not_existed(self, connect, collection):
# '''
# target: test basic search fuction, all the search params is corrent, change top-k value
# method: search with the given vector id, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# vectors, ids = self.init_data(connect, collection)
# query_ids = non_exist_id
# status, result = connect.search_by_id(collection, query_ids, top_k, params={})
# assert status.OK()
# assert len(result[0]) == 0
#
# def test_search_collection_empty(self, connect, collection):
# '''
# target: test basic search fuction, all the search params is corrent, change top-k value
# method: search with the given vector id, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# query_ids = non_exist_id
# logging.getLogger().info(query_ids)
# logging.getLogger().info(collection)
# logging.getLogger().info(connect.get_collection_info(collection))
# status, result = connect.search_by_id(collection, query_ids, top_k, params={})
# assert not status.OK()
#
# def test_search_index_l2(self, connect, collection, get_simple_index):
# '''
# target: test basic search fuction, all the search params is corrent, test all index params, and build
# method: search with the given vectors, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# index_param = get_simple_index["index_param"]
# index_type = get_simple_index["index_type"]
# if index_type == IndexType.IVF_PQ:
# pytest.skip("skip pq")
# vectors, ids = self.init_data(connect, collection)
# status = connect.create_index(collection, index_type, index_param)
# query_ids = [ids[0]]
# search_param = get_search_param(index_type)
# status, result = connect.search_by_id(collection, query_ids, top_k, params=search_param)
# assert status.OK()
# assert len(result[0]) == min(len(vectors), top_k)
# assert result[0][0].distance <= epsilon
# assert check_result(result[0], ids[0])
#
# def test_search_index_l2_B(self, connect, collection, get_simple_index):
# '''
# target: test basic search fuction, all the search params is corrent, test all index params, and build
# method: search with the given vectors, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# index_param = get_simple_index["index_param"]
# index_type = get_simple_index["index_type"]
# if index_type == IndexType.IVF_PQ:
# pytest.skip("skip pq")
# vectors, ids = self.init_data(connect, collection)
# status = connect.create_index(collection, index_type, index_param)
# query_ids = ids[0:nq]
# search_param = get_search_param(index_type)
# status, result = connect.search_by_id(collection, query_ids, top_k, params=search_param)
# assert status.OK()
# assert len(result) == nq
# for i in range(nq):
# assert len(result[i]) == min(len(vectors), top_k)
# assert result[i][0].distance <= epsilon
# assert check_result(result[i], ids[i])
#
# def test_search_index_l2_C(self, connect, collection, get_simple_index):
# '''
# target: test basic search fuction, all the search params is corrent, one id is not existed
# method: search with the given vectors, check the result
# expected: search status ok, and the length of the result is top_k
# '''
# index_param = get_simple_index["index_param"]
# index_type = get_simple_index["index_type"]
# if index_type == IndexType.IVF_PQ:
# pytest.skip("skip pq")
# vectors, ids = self.init_data(connect, collection)
# status = connect.create_index(collection, index_type, index_param)
# query_ids = ids[0:nq]
# query_ids[0] = 1
# search_param = get_search_param(index_type)
# status, result = connect.search_by_id(collection, query_ids, top_k, params=search_param)
# assert status.OK()
# assert len(result) == nq
# for i in range(nq):
# if i == 0:
# assert len(result[i]) == 0
# else:
# assert len(result[i]) == min(len(vectors), top_k)
# assert result[i][0].distance <= epsilon
# assert check_result(result[i], ids[i])
#
# def test_search_index_delete(self, connect, collection):
# vectors, ids = self.init_data(connect, collection)
# query_ids = ids[0:nq]
# status = connect.delete_entity_by_id(collection, [query_ids[0]])
# assert status.OK()
# status = connect.flush([collection])
# status, result = connect.search_by_id(collection, query_ids, top_k, params={})
# assert status.OK()
# assert len(result) == nq
# assert len(result[0]) == 0
# assert len(result[1]) == top_k
# assert result[1][0].distance <= epsilon
#
# def test_search_l2_partition_tag_not_existed(self, connect, collection):
# '''
# target: test basic search fuction, all the search params is corrent, test all index params, and build
# method: add vectors into collection, search with the given vectors, check the result
# expected: search status ok, and the length of the result is top_k, search collection with partition tag return empty
# '''
# status = connect.create_partition(collection, tag)
# vectors, ids = self.init_data(connect, collection)
# query_ids = [ids[0]]
# new_tag = gen_unique_str()
# status, result = connect.search_by_id(collection, query_ids, top_k, partition_tags=[new_tag], params={})
# assert not status.OK()
# logging.getLogger().info(status)
# assert len(result) == 0
#
# def test_search_l2_partition_empty(self, connect, collection):
# status = connect.create_partition(collection, tag)
# vectors, ids = self.init_data(connect, collection)
# query_ids = [ids[0]]
# status, result = connect.search_by_id(collection, query_ids, top_k, partition_tags=[tag], params={})
# assert not status.OK()
# logging.getLogger().info(status)
# assert len(result) == 0
#
# def test_search_l2_partition(self, connect, collection):
# status = connect.create_partition(collection, tag)
# vectors, ids = self.init_data_partition(connect, collection, tag)
# query_ids = ids[-1:]
# status, result = connect.search_by_id(collection, query_ids, top_k, partition_tags=[tag])
# assert status.OK()
# assert len(result) == 1
# assert len(result[0]) == min(len(vectors), top_k)
# assert check_result(result[0], query_ids[-1])
#
# def test_search_l2_partition_B(self, connect, collection):
# status = connect.create_partition(collection, tag)
# vectors, ids = self.init_data_partition(connect, collection, tag)
# query_ids = ids[0:nq]
# status, result = connect.search_by_id(collection, query_ids, top_k, partition_tags=[tag])
# assert status.OK()
# assert len(result) == nq
# for i in range(nq):
# assert len(result[i]) == min(len(vectors), top_k)
# assert result[i][0].distance <= epsilon
# assert check_result(result[i], ids[i])
#
# def test_search_l2_index_partitions(self, connect, collection):
# new_tag = "new_tag"
# status = connect.create_partition(collection, tag)
# status = connect.create_partition(collection, new_tag)
# vectors, ids = self.init_data_partition(connect, collection, tag)
# vectors, new_ids = self.init_data_partition(connect, collection, new_tag, nb=nb+1)
# tmp = 2
# query_ids = ids[0:tmp]
# query_ids.extend(new_ids[tmp:nq])
# status, result = connect.search_by_id(collection, query_ids, top_k, partition_tags=[tag, new_tag], params={})
# assert status.OK()
# assert len(result) == nq
# for i in range(nq):
# assert len(result[i]) == min(len(vectors), top_k)
# assert result[i][0].distance <= epsilon
# if i < tmp:
# assert result[i][0].id == ids[i]
# else:
# assert result[i][0].id == new_ids[i]
#
# def test_search_l2_index_partitions_match_one_tag(self, connect, collection):
# new_tag = "new_tag"
# status = connect.create_partition(collection, tag)
# status = connect.create_partition(collection, new_tag)
# vectors, ids = self.init_data_partition(connect, collection, tag)
# vectors, new_ids = self.init_data_partition(connect, collection, new_tag, nb=nb+1)
# tmp = 2
# query_ids = ids[0:tmp]
# query_ids.extend(new_ids[tmp:nq])
# status, result = connect.search_by_id(collection, query_ids, top_k, partition_tags=[new_tag], params={})
# assert status.OK()
# assert len(result) == nq
# for i in range(nq):
# if i < tmp:
# assert result[i][0].distance > epsilon
# assert result[i][0].id != ids[i]
# else:
# assert len(result[i]) == min(len(vectors), top_k)
# assert result[i][0].distance <= epsilon
# assert result[i][0].id == new_ids[i]
# assert result[i][1].distance > epsilon
#
# # def test_search_by_id_without_connect(self, dis_connect, collection):
# # '''
# # target: test search vectors without connection
# # method: use dis connected instance, call search method and check if search successfully
# # expected: raise exception
# # '''
# # query_ids = [1]
# # with pytest.raises(Exception) as e:
# # status, ids = dis_connect.search_by_id(collection, query_ids, top_k, params={})
#
# def test_search_collection_name_not_existed(self, connect, collection):
# '''
# target: search collection not existed
# method: search with the random collection_name, which is not in db
# expected: status not ok
# '''
# collection_name = gen_unique_str("not_existed_collection")
# query_ids = non_exist_id
# status, result = connect.search_by_id(collection_name, query_ids, top_k, params={})
# assert not status.OK()
#
# def test_search_collection_name_None(self, connect, collection):
# '''
# target: search collection that collection name is None
# method: search with the collection_name: None
# expected: status not ok
# '''
# collection_name = None
# query_ids = non_exist_id
# with pytest.raises(Exception) as e:
# status, result = connect.search_by_id(collection_name, query_ids, top_k, params={})
#
# def test_search_jac(self, connect, jac_collection, get_jaccard_index):
# index_param = get_jaccard_index["index_param"]
# index_type = get_jaccard_index["index_type"]
# vectors, ids = self.init_data_binary(connect, jac_collection)
# status = connect.create_index(jac_collection, index_type, index_param)
# assert status.OK()
# query_ids = ids[0:nq]
# search_param = get_search_param(index_type)
# status, result = connect.search_by_id(jac_collection, query_ids, top_k, params=search_param)
# assert status.OK()
# assert len(result) == nq
# for i in range(nq):
# assert len(result[i]) == min(len(vectors), top_k)
# assert result[i][0].distance <= epsilon
# assert check_result(result[i], ids[i])
#
#
# """
# ******************************************************************
# # The following cases are used to test `search_by_id` function
# # with invalid collection_name top-k / ids / tags
# ******************************************************************
# """
#
# class TestSearchParamsInvalid(object):
# nlist = 16384
# index_param = {"index_type": IndexType.IVF_SQ8, "nlist": nlist}
#
# """
# Test search collection with invalid collection names
# """
# @pytest.fixture(
# scope="function",
# params=gen_invalid_collection_names()
# )
# def get_collection_name(self, request):
# yield request.param
#
# @pytest.mark.level(2)
# def test_search_with_invalid_collectionname(self, connect, get_collection_name):
# collection_name = get_collection_name
# query_ids = non_exist_id
# status, result = connect.search_by_id(collection_name, query_ids, top_k, params={})
# assert not status.OK()
#
# @pytest.mark.level(1)
# def test_search_with_invalid_tag_format(self, connect, collection):
# query_ids = non_exist_id
# with pytest.raises(Exception) as e:
# status, result = connect.search_by_id(collection_name, query_ids, top_k, partition_tags="tag")
#
# """
# Test search collection with invalid top-k
# """
# @pytest.fixture(
# scope="function",
# params=gen_invalid_top_ks()
# )
# def get_top_k(self, request):
# yield request.param
#
# @pytest.mark.level(1)
# def test_search_with_invalid_top_k(self, connect, collection, get_top_k):
# top_k = get_top_k
# query_ids = non_exist_id
# if isinstance(top_k, int):
# status, result = connect.search_by_id(collection, query_ids, top_k)
# assert not status.OK()
# else:
# with pytest.raises(Exception) as e:
# status, result = connect.search_by_id(collection, query_ids, top_k)
#
# """
# Test search collection with invalid query ids
# """
# @pytest.fixture(
# scope="function",
# params=gen_invalid_vector_ids()
# )
# def get_ids(self, request):
# yield request.param
#
# @pytest.mark.level(1)
# def test_search_with_invalid_ids(self, connect, collection, get_ids):
# id = get_ids
# query_ids = [id]
# if not isinstance(id, int):
# with pytest.raises(Exception) as e:
# status, result = connect.search_by_id(collection, query_ids, top_k)
#
# @pytest.mark.level(2)
# def test_search_with_part_invalid_ids(self, connect, collection, get_ids):
# id = get_ids
# query_ids = [1, id]
# with pytest.raises(Exception) as e:
# status, result = connect.search_by_id(collection, query_ids, top_k)
#
#
# def check_result(result, id):
# if len(result) >= top_k:
# return id in [x.id for x in result[:top_k]]
# else:
# return id in (i.id for i in result)