milvus/tests/python_client/chaos/test_chaos_memory_stress.py

649 lines
30 KiB
Python

import random
import threading
import time
from time import sleep
import pytest
import datetime
from pymilvus import connections
from base.collection_wrapper import ApiCollectionWrapper
from base.utility_wrapper import ApiUtilityWrapper
from chaos.checker import Op, CreateChecker, InsertFlushChecker, IndexChecker, SearchChecker, QueryChecker
from common.cus_resource_opts import CustomResourceOperations as CusResource
from common import common_func as cf
from common import common_type as ct
from chaos import chaos_commons as cc
from chaos.chaos_commons import gen_experiment_config, get_chaos_yamls, start_monitor_threads
from common.common_type import CaseLabel, CheckTasks
from chaos import constants
from utils.util_log import test_log as log
from utils.util_k8s import get_querynode_id_pod_pairs
def apply_memory_stress(chaos_yaml):
chaos_config = gen_experiment_config(chaos_yaml)
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug("chaos injected")
@pytest.mark.tags(CaseLabel.L3)
class TestChaosData:
@pytest.fixture(scope="function", autouse=True)
def connection(self, host, port):
connections.add_connection(default={"host": host, "port": port})
connections.connect(alias='default')
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize('chaos_yaml', get_chaos_yamls())
def test_chaos_memory_stress_querynode(self, connection, chaos_yaml):
"""
target: explore query node behavior after memory stress chaos injected and recovered
method: 1. Create a collection, insert some data
2. Inject memory stress chaos
3. Start a threas to load, search and query
4. After chaos duration, check query search success rate
5. Delete chaos or chaos finished finally
expected: 1.If memory is insufficient, querynode is OOMKilled and available after restart
2.If memory is sufficient, succ rate of query and search both are 1.0
"""
c_name = 'chaos_memory_nx6DNW4q'
collection_w = ApiCollectionWrapper()
collection_w.init_collection(c_name)
log.debug(collection_w.schema)
log.debug(collection_w._shards_num)
# apply memory stress chaos
chaos_config = gen_experiment_config(chaos_yaml)
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug("chaos injected")
duration = chaos_config.get('spec').get('duration')
duration = duration.replace('h', '*3600+').replace('m', '*60+').replace('s', '*1+') + '+0'
meta_name = chaos_config.get('metadata').get('name')
# wait memory stress
sleep(constants.WAIT_PER_OP * 2)
# try to do release, load, query and serach in a duration time loop
try:
start = time.time()
while time.time() - start < eval(duration):
collection_w.release()
collection_w.load()
term_expr = f'{ct.default_int64_field_name} in {[random.randint(0, 100)]}'
query_res, _ = collection_w.query(term_expr)
assert len(query_res) == 1
search_res, _ = collection_w.search(cf.gen_vectors(1, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
log.debug(search_res[0].ids)
assert len(search_res[0].ids) == ct.default_limit
except Exception as e:
raise Exception(str(e))
finally:
chaos_res.delete(meta_name)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize('chaos_yaml', get_chaos_yamls())
def test_chaos_memory_stress_datanode(self, chaos_yaml):
"""
target: test inject memory stress into dataNode
method: 1.Deploy milvus and limit datanode memory resource
2.Create collection and insert some data
3.Inject memory stress chaos
4.Continue to insert data
expected:
"""
# init collection and insert 250 nb
nb = 25000
dim = 512
c_name = cf.gen_unique_str('chaos_memory')
collection_w = ApiCollectionWrapper()
collection_w.init_collection(name=c_name,
schema=cf.gen_default_collection_schema(dim=dim))
for i in range(10):
t0 = datetime.datetime.now()
df = cf.gen_default_dataframe_data(nb=nb, dim=dim)
res = collection_w.insert(df)[0]
assert res.insert_count == nb
log.info(f'After {i + 1} insert, num_entities: {collection_w.num_entities}')
tt = datetime.datetime.now() - t0
log.info(f"{i} insert and flush data cost: {tt}")
# inject memory stress
chaos_config = gen_experiment_config(chaos_yaml)
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug("chaos injected")
# Continue to insert data
collection_w.insert(df)
log.info(f'Total num entities: {collection_w.num_entities}')
# delete chaos
meta_name = chaos_config.get('metadata', None).get('name', None)
chaos_res.delete(metadata_name=meta_name)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize('chaos_yaml', get_chaos_yamls())
def test_chaos_memory_stress_indexnode(self, connection, chaos_yaml):
"""
target: test inject memory stress into indexnode
method: 1.Deploy milvus and limit indexnode memory resource 3 / 4Gi
2.Create collection and insert some data
3.Inject memory stress chaos 512Mi
4.Create index
expected:
"""
# init collection and insert
nb = 256000 # vector size: 512*4*nb about 512Mi and create index need 2.8Gi memory
dim = 512
# c_name = cf.gen_unique_str('chaos_memory')
c_name = 'chaos_memory_gKs8aSUu'
index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 128}}
collection_w = ApiCollectionWrapper()
collection_w.init_collection(name=c_name,
schema=cf.gen_default_collection_schema(dim=dim), shards_num=1)
# insert 256000 512 dim entities, size 512Mi
for i in range(2):
t0_insert = datetime.datetime.now()
df = cf.gen_default_dataframe_data(nb=nb // 2, dim=dim)
res = collection_w.insert(df)[0]
assert res.insert_count == nb // 2
# log.info(f'After {i + 1} insert, num_entities: {collection_w.num_entities}')
tt_insert = datetime.datetime.now() - t0_insert
log.info(f"{i} insert data cost: {tt_insert}")
# flush
t0_flush = datetime.datetime.now()
assert collection_w.num_entities == nb
tt_flush = datetime.datetime.now() - t0_flush
log.info(f'flush {nb * 10} entities cost: {tt_flush}')
log.info(collection_w.indexes[0].params)
if collection_w.has_index()[0]:
collection_w.drop_index()
# indexNode start build index, inject chaos memory stress
chaos_config = gen_experiment_config(chaos_yaml)
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug("inject chaos")
# create index
t0_index = datetime.datetime.now()
index, _ = collection_w.create_index(field_name=ct.default_float_vec_field_name,
index_params=index_params)
tt_index = datetime.datetime.now() - t0_index
log.info(f"create index cost: {tt_index}")
log.info(collection_w.indexes[0].params)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize('chaos_yaml', cc.get_chaos_yamls())
def test_chaos_memory_stress_etcd(self, chaos_yaml):
"""
target: test inject memory stress into all etcd pods
method: 1.Deploy milvus and limit etcd memory resource 1Gi witl all mode
2.Continuously and concurrently do milvus operations
3.Inject memory stress chaos 51024Mi
4.After duration, delete chaos stress
expected: Verify milvus operation succ rate
"""
mic_checkers = {
Op.create: CreateChecker(),
Op.insert: InsertFlushChecker(),
Op.flush: InsertFlushChecker(flush=True),
Op.index: IndexChecker(),
Op.search: SearchChecker(),
Op.query: QueryChecker()
}
# start thread keep running milvus op
start_monitor_threads(mic_checkers)
# parse chaos object
chaos_config = cc.gen_experiment_config(chaos_yaml)
# duration = chaos_config["spec"]["duration"]
meta_name = chaos_config.get('metadata').get('name')
duration = chaos_config.get('spec').get('duration')
# apply chaos object
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.info("Chaos injected")
# convert string duration time to an int number in seconds
if isinstance(duration, str):
duration = duration.replace('h', '*3600+').replace('m', '*60+').replace('s', '*1+') + '+0'
else:
log.error("Duration must be string type")
# Delete experiment after it's over
timer = threading.Timer(interval=eval(duration), function=chaos_res.delete, args=(meta_name, False))
timer.start()
timer.join()
# output milvus op succ rate
for k, ch in mic_checkers.items():
log.debug(f'Succ rate of {k.value}: {ch.succ_rate()}')
assert ch.succ_rate() == 1.0
@pytest.mark.tags(CaseLabel.L3)
class TestMemoryStressReplica:
nb = 50000
dim = 128
@pytest.fixture(scope="function", autouse=True)
def prepare_collection(self, host, port):
""" dim 128, 1000,000 entities loaded needed memory 3-5 Gi"""
connections.connect("default", host=host, port=19530)
collection_w = ApiCollectionWrapper()
c_name = "stress_replicas_2"
collection_w.init_collection(name=c_name,
schema=cf.gen_default_collection_schema(dim=self.dim))
# insert 10 sealed segments
for i in range(20):
t0 = datetime.datetime.now()
df = cf.gen_default_dataframe_data(nb=nb, dim=dim)
res = collection_w.insert(df)[0]
assert res.insert_count == nb
log.info(f'After {i + 1} insert, num_entities: {collection_w.num_entities}')
tt = datetime.datetime.now() - t0
log.info(f"{i} insert and flush data cost: {tt}")
log.debug(collection_w.num_entities)
return collection_w
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/16887")
@pytest.mark.tags(CaseLabel.L3)
def test_memory_stress_replicas_befor_load(self, prepare_collection):
"""
target: test querynode group load with insufficient memory
method: 1.Limit querynode memory ? 2Gi
2.Load sealed data (needed memory > memory limit)
expected: Raise an exception
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
err = {"err_code": 1, "err_msg": "xxxxxxxxx"}
# collection_w.load(replica_number=2, timeout=60, check_task=CheckTasks.err_res, check_items=err)
collection_w.load(replica_number=5)
utility_w.loading_progress(collection_w.name)
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=60)
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/16965")
@pytest.mark.parametrize("mode", ["one", "all", "fixed"])
@pytest.mark.tags(CaseLabel.L3)
def test_memory_stress_replicas_group_sufficient(self, prepare_collection, mode):
"""
target: test apply stress memory on one querynode and the memory is enough to load replicas
method: 1.Limit all querynodes memory 6Gi
2.Apply 3Gi memory stress on different number of querynodes (load whole collection need about 1.5GB)
expected: Verify load successfully and search result are correct
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
# # apply memory stress chaos
chaos_config = gen_experiment_config("./chaos_objects/memory_stress/chaos_querynode_memory_stress.yaml")
chaos_config['spec']['mode'] = mode
chaos_config['spec']['duration'] = '3m'
chaos_config['spec']['stressors']['memory']['size'] = '3Gi'
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug("chaos injected")
sleep(20)
#
try:
collection_w.load(replica_number=2, timeout=60)
utility_w.loading_progress(collection_w.name)
replicas, _ = collection_w.get_replicas()
log.debug(replicas)
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=120)
assert 1 == len(search_res) and ct.default_limit == len(search_res[0])
collection_w.release()
except Exception as e:
raise Exception(str(e))
finally:
# delete chaos
meta_name = chaos_config.get('metadata', None).get('name', None)
chaos_res.delete(metadata_name=meta_name)
log.debug("Test finished")
@pytest.mark.parametrize("mode", ["one", "all", "fixed"])
def test_memory_stress_replicas_group_insufficient(self, prepare_collection, mode):
"""
target: test apply stress memory on different number querynodes and the group failed to load,
bacause of the memory is insufficient
method: 1.Limit querynodes memory 5Gi
2.Create collection and insert 1000,000 entities
3.Apply memory stress on querynodes and it's memory is not enough to load replicas
expected: Verify load raise exception, and after delete chaos, load and search successfully
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
chaos_config = gen_experiment_config("./chaos_objects/memory_stress/chaos_querynode_memory_stress.yaml")
# Update config
chaos_config['spec']['mode'] = mode
chaos_config['spec']['stressors']['memory']['size'] = '5Gi'
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
# chaos_start = time.time()
log.debug("chaos injected")
sleep(10)
try:
# load failed
err = {"err_code": 1, "err_msg": "shuffleSegmentsToQueryNodeV2: insufficient memory of available node"}
collection_w.load(replica_number=5, timeout=60, check_task=CheckTasks.err_res, check_items=err)
# query failed because not loaded
err = {"err_code": 1, "err_msg": "not loaded into memory"}
collection_w.query("int64 in [0]", check_task=CheckTasks.err_res, check_items=err)
# delete chaos
meta_name = chaos_config.get('metadata', None).get('name', None)
chaos_res.delete(metadata_name=meta_name)
sleep(10)
# after delete chaos load and query successfully
collection_w.load(replica_number=5, timeout=60)
progress, _ = utility_w.loading_progress(collection_w.name)
# assert progress["loading_progress"] == "100%"
query_res, _ = collection_w.query("int64 in [0]")
assert len(query_res) != 0
collection_w.release()
except Exception as e:
raise Exception(str(e))
finally:
log.debug("Test finished")
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/16965")
@pytest.mark.parametrize("mode", ["one", "all", "fixed"])
def test_chaos_memory_stress_replicas_OOM(self, prepare_collection, mode):
"""
target: test apply memory stress during loading, and querynode OOMKilled
method: 1.Deploy and limit querynode memory limit 6Gi
2.Create collection and insert 1000,000 entities
3.Apply memory stress and querynode OOMKilled during loading replicas
expected: Verify the mic is available to load and search querynode restart
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
chaos_config = gen_experiment_config("./chaos_objects/memory_stress/chaos_querynode_memory_stress.yaml")
chaos_config['spec']['mode'] = mode
chaos_config['spec']['duration'] = '3m'
chaos_config['spec']['stressors']['memory']['size'] = '6Gi'
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug("chaos injected")
collection_w.load(replica_number=2, timeout=60, _async=True)
utility_w.wait_for_loading_complete(collection_w.name)
progress, _ = utility_w.loading_progress(collection_w.name)
assert progress["loading_progress"] == '100%'
sleep(180)
chaos_res.delete(metadata_name=chaos_config.get('metadata', None).get('name', None))
# TODO search failed
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=120)
assert 1 == len(search_res) and ct.default_limit == len(search_res[0])
collection_w.release()
collection_w.load(replica_number=2)
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=120)
assert 1 == len(search_res) and ct.default_limit == len(search_res[0])
@pytest.mark.tags(CaseLabel.L3)
class TestMemoryStressReplicaLoadBalance:
nb = 50000
dim = 128
@pytest.fixture(scope="function", autouse=True)
def prepare_collection(self, host, port):
""" dim 128, 1000,000 entities loaded needed memory 3-5 Gi"""
connections.connect("default", host=host, port=19530)
collection_w = ApiCollectionWrapper()
c_name = "stress_replicas_2"
collection_w.init_collection(name=c_name,
schema=cf.gen_default_collection_schema(dim=self.dim))
# insert 10 sealed segments
for i in range(20):
t0 = datetime.datetime.now()
df = cf.gen_default_dataframe_data(nb=self.nb, dim=self.dim)
res = collection_w.insert(df)[0]
assert res.insert_count == self.nb
log.info(f'After {i + 1} insert, num_entities: {collection_w.num_entities}')
tt = datetime.datetime.now() - t0
log.info(f"{i} insert and flush data cost: {tt}")
log.debug(collection_w.num_entities)
return collection_w
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/17040")
def test_memory_stress_replicas_group_load_balance(self, prepare_collection):
"""
target: test apply memory stress on replicas and load balance inside group
method: 1.Deploy milvus and limit querynode memory 6Gi
2.Insret 1000,000 entities (500Mb), load 2 replicas (memory usage 1.5Gb)
3.Apply memory stress 4Gi on querynode
expected: Verify that load balancing occurs
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
release_name = "mic-memory"
# load and searchc
collection_w.load(replica_number=2)
progress, _ = utility_w.loading_progress(collection_w.name)
assert progress["loading_progress"] == "100%"
# get the replica and random chaos querynode
replicas, _ = collection_w.get_replicas()
chaos_querynode_id = replicas.groups[0].group_nodes[0]
label = f"app.kubernetes.io/instance={release_name}, app.kubernetes.io/component=querynode"
querynode_id_pod_pair = get_querynode_id_pod_pairs("chaos-testing", label)
chaos_querynode_pod = querynode_id_pod_pair[chaos_querynode_id]
# get the segment num before chaos
seg_info_before, _ = utility_w.get_query_segment_info(collection_w.name)
seg_distribution_before = cf.get_segment_distribution(seg_info_before)
segments_num_before = len(seg_distribution_before[chaos_querynode_id]["sealed"])
log.debug(segments_num_before)
log.debug(seg_distribution_before[chaos_querynode_id]["sealed"])
# apply memory stress
chaos_config = gen_experiment_config("./chaos_objects/memory_stress/chaos_replicas_memory_stress_pods.yaml")
chaos_config['spec']['selector']['pods']['chaos-testing'] = [chaos_querynode_pod]
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug(f"Apply memory stress on querynode {chaos_querynode_id}, pod {chaos_querynode_pod}")
duration = chaos_config.get('spec').get('duration')
duration = duration.replace('h', '*3600+').replace('m', '*60+').replace('s', '*1+') + '+0'
sleep(eval(duration))
chaos_res.delete(metadata_name=chaos_config.get('metadata', None).get('name', None))
# Verfiy auto load loadbalance
seg_info_after, _ = utility_w.get_query_segment_info(collection_w.name)
seg_distribution_after = cf.get_segment_distribution(seg_info_after)
segments_num_after = len(seg_distribution_after[chaos_querynode_id]["sealed"])
log.debug(segments_num_after)
log.debug(seg_distribution_after[chaos_querynode_id]["sealed"])
assert segments_num_after < segments_num_before
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=120)
assert 1 == len(search_res) and ct.default_limit == len(search_res[0])
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/16965")
def test_memory_stress_replicas_cross_group_load_balance(self, prepare_collection):
"""
target: test apply memory stress on one group and no load balance cross replica groups
method: 1.Limit all querynodes memory 6Gi
2.Create and insert 1000,000 entities
3.Load collection with two replicas
4.Apply memory stress on one grooup 80%
expected: Verify that load balancing across groups is not occurring
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
release_name = "mic-memory"
# load and searchc
collection_w.load(replica_number=2)
progress, _ = utility_w.loading_progress(collection_w.name)
assert progress["loading_progress"] == "100%"
seg_info_before, _ = utility_w.get_query_segment_info(collection_w.name)
# get the replica and random chaos querynode
replicas, _ = collection_w.get_replicas()
group_nodes = list(replicas.groups[0].group_nodes)
label = f"app.kubernetes.io/instance={release_name}, app.kubernetes.io/component=querynode"
querynode_id_pod_pair = get_querynode_id_pod_pairs("chaos-testing", label)
group_nodes_pod = [querynode_id_pod_pair[node_id] for node_id in group_nodes]
# apply memory stress
chaos_config = gen_experiment_config("./chaos_objects/memory_stress/chaos_replicas_memory_stress_pods.yaml")
chaos_config['spec']['selector']['pods']['chaos-testing'] = group_nodes_pod
log.debug(chaos_config)
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
log.debug(f"Apply memory stress on querynode {group_nodes}, pod {group_nodes_pod}")
duration = chaos_config.get('spec').get('duration')
duration = duration.replace('h', '*3600+').replace('m', '*60+').replace('s', '*1+') + '+0'
sleep(eval(duration))
chaos_res.delete(metadata_name=chaos_config.get('metadata', None).get('name', None))
# Verfiy auto load loadbalance
seg_info_after, _ = utility_w.get_query_segment_info(collection_w.name)
seg_distribution_before = cf.get_segment_distribution(seg_info_before)
seg_distribution_after = cf.get_segment_distribution(seg_info_after)
for node_id in group_nodes:
assert len(seg_distribution_before[node_id]) == len(seg_distribution_after[node_id])
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=120)
assert 1 == len(search_res) and ct.default_limit == len(search_res[0])
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/16995")
@pytest.mark.tags(CaseLabel.L3)
def test_memory_stress_replicas_load_balance_single_node(self, prepare_collection):
"""
target: test apply memory stress on single node replica, and it OOMKilled
method: 1.Deploy 2 querynodes and limit memory 6Gi
2.Loading 1000,000 entities (data_size=500Mb) with 2 replicas (memory_usage=1.5Gb)
3.Apply memory stress on one querynode and make it OOMKilled
expected: After deleting chaos, querynode turns running, search successfully
"""
collection_w = prepare_collection
utility_w = ApiUtilityWrapper()
# load and searchc
collection_w.load(replica_number=2)
progress, _ = utility_w.loading_progress(collection_w.name)
assert progress["loading_progress"] == "100%"
query_res, _ = collection_w.query("int64 in [0]")
assert len(query_res) != 0
# apply memory stress
chaos_config = gen_experiment_config("./chaos_objects/memory_stress/chaos_querynode_memory_stress.yaml")
# Update config
chaos_config['spec']['mode'] = "one"
chaos_config['spec']['stressors']['memory']['size'] = '6Gi'
chaos_config['spec']['duration'] = "1m"
log.debug(chaos_config)
duration = chaos_config.get('spec').get('duration')
duration = duration.replace('h', '*3600+').replace('m', '*60+').replace('s', '*1+') + '+0'
chaos_res = CusResource(kind=chaos_config['kind'],
group=constants.CHAOS_GROUP,
version=constants.CHAOS_VERSION,
namespace=constants.CHAOS_NAMESPACE)
chaos_res.create(chaos_config)
sleep(eval(duration))
chaos_res.delete(metadata_name=chaos_config.get('metadata', None).get('name', None))
# release and load again
collection_w.release()
collection_w.load(replica_number=2)
progress, _ = utility_w.loading_progress(collection_w.name)
assert progress["loading_progress"] == "100%"
search_res, _ = collection_w.search(cf.gen_vectors(1, dim=self.dim),
ct.default_float_vec_field_name, ct.default_search_params,
ct.default_limit, timeout=120)
assert 1 == len(search_res) and ct.default_limit == len(search_res[0])