milvus/internal/core/unittest/test_float16.cpp

565 lines
23 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include "common/LoadInfo.h"
#include "common/Types.h"
#include "index/IndexFactory.h"
#include "knowhere/comp/index_param.h"
#include "query/ExprImpl.h"
#include "segcore/reduce/Reduce.h"
#include "segcore/reduce_c.h"
#include "test_utils/DataGen.h"
#include "test_utils/PbHelper.h"
#include "test_utils/indexbuilder_test_utils.h"
#include "pb/schema.pb.h"
#include "pb/plan.pb.h"
#include "query/Expr.h"
#include "query/Plan.h"
#include "query/Utils.h"
#include "query/PlanImpl.h"
#include "query/PlanNode.h"
#include "query/PlanProto.h"
#include "query/SearchBruteForce.h"
#include "query/generated/ExecPlanNodeVisitor.h"
#include "query/generated/PlanNodeVisitor.h"
#include "query/generated/ExecExprVisitor.h"
#include "query/generated/ExprVisitor.h"
#include "query/generated/ShowPlanNodeVisitor.h"
#include "segcore/Collection.h"
#include "segcore/SegmentSealed.h"
#include "segcore/SegmentGrowing.h"
#include "segcore/SegmentGrowingImpl.h"
#include "test_utils/AssertUtils.h"
#include "test_utils/DataGen.h"
using namespace milvus;
using namespace milvus::index;
using namespace milvus::query;
using namespace milvus::segcore;
using namespace knowhere;
using milvus::index::VectorIndex;
using milvus::segcore::LoadIndexInfo;
const int64_t ROW_COUNT = 100 * 1000;
// TEST(Float16, Insert) {
// int64_t N = ROW_COUNT;
// constexpr int64_t size_per_chunk = 32 * 1024;
// auto schema = std::make_shared<Schema>();
// auto float16_vec_fid = schema->AddDebugField(
// "float16vec", DataType::VECTOR_FLOAT16, 32, knowhere::metric::L2);
// auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
// schema->set_primary_field_id(i64_fid);
// auto dataset = DataGen(schema, N);
// // auto seg_conf = SegcoreConfig::default_config();
// auto segment = CreateGrowingSegment(schema, empty_index_meta);
// segment->PreInsert(N);
// segment->Insert(0,
// N,
// dataset.row_ids_.data(),
// dataset.timestamps_.data(),
// dataset.raw_);
// auto float16_ptr = dataset.get_col<float16>(float16_vec_fid);
// SegmentInternalInterface& interface = *segment;
// auto num_chunk = interface.num_chunk();
// ASSERT_EQ(num_chunk, upper_div(N, size_per_chunk));
// auto row_count = interface.get_row_count();
// ASSERT_EQ(N, row_count);
// for (auto chunk_id = 0; chunk_id < num_chunk; ++chunk_id) {
// auto float16_span = interface.chunk_data<milvus::Float16Vector>(
// float16_vec_fid, chunk_id);
// auto begin = chunk_id * size_per_chunk;
// auto end = std::min((chunk_id + 1) * size_per_chunk, N);
// auto size_of_chunk = end - begin;
// for (int i = 0; i < size_of_chunk; ++i) {
// // std::cout << float16_span.data()[i] << " " << float16_ptr[i + begin * 32] << std::endl;
// ASSERT_EQ(float16_span.data()[i], float16_ptr[i + begin * 32]);
// }
// }
// }
TEST(Float16, ShowExecutor) {
auto metric_type = knowhere::metric::L2;
auto node = std::make_unique<Float16VectorANNS>();
auto schema = std::make_shared<Schema>();
auto field_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT16, 16, metric_type);
int64_t num_queries = 100L;
auto raw_data = DataGen(schema, num_queries);
auto& info = node->search_info_;
info.metric_type_ = metric_type;
info.topk_ = 20;
info.field_id_ = field_id;
node->predicate_ = std::nullopt;
ShowPlanNodeVisitor show_visitor;
PlanNodePtr base(node.release());
auto res = show_visitor.call_child(*base);
auto dup = res;
std::cout << dup.dump(4);
}
TEST(Float16, ExecWithoutPredicateFlat) {
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT16, 32, knowhere::metric::L2);
schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
int64_t N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto vec_ptr = dataset.get_col<float16>(vec_fid);
auto num_queries = 5;
auto ph_group_raw = CreateFloat16PlaceholderGroup(num_queries, 32, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
std::vector<std::vector<std::string>> results;
auto json = SearchResultToJson(*sr);
std::cout << json.dump(2);
}
TEST(Float16, GetVector) {
auto metricType = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT16, 128, metricType);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"},
{"metric_type", metricType},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_growing = CreateGrowingSegment(schema, metaPtr, 1, config);
auto segment = dynamic_cast<SegmentGrowingImpl*>(segment_growing.get());
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<float16>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()->mutable_vectors()->float16_vector();
EXPECT_TRUE(vector.size() == num_inserted * dim * sizeof(float16));
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(
reinterpret_cast<float16*>(vector.data())[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
}
TEST(Float16, RetrieveEmpty) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec = schema->AddDebugField(
"vector_64", DataType::VECTOR_FLOAT16, DIM, knowhere::metric::L2);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
auto choose = [=](int i) { return i * 3 % N; };
auto segment = CreateSealedSegment(schema);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<proto::plan::GenericValue> values;
{
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val;
val.set_int64_val(choose(i));
values.push_back(val);
}
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_offsets{fid_64, fid_vec};
plan->field_ids_ = target_offsets;
auto retrieve_results = segment->Retrieve(
nullptr, plan.get(), 100, DEFAULT_MAX_OUTPUT_SIZE, false);
Assert(retrieve_results->fields_data_size() == target_offsets.size());
auto field0 = retrieve_results->fields_data(0);
auto field1 = retrieve_results->fields_data(1);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
Assert(field0_data.data_size() == 0);
Assert(field1.vectors().float16_vector().size() == 0);
}
TEST(Float16, ExecWithPredicate) {
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT16, 16, knowhere::metric::L2);
schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 101
data_type: Float
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
int64_t N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreateFloat16PlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto sr = segment->Search(plan.get(), ph_group.get(), 1L << 63);
int topk = 5;
query::Json json = SearchResultToJson(*sr);
std::cout << json.dump(2);
}
// TEST(BFloat16, Insert) {
// int64_t N = ROW_COUNT;
// constexpr int64_t size_per_chunk = 32 * 1024;
// auto schema = std::make_shared<Schema>();
// auto bfloat16_vec_fid = schema->AddDebugField(
// "bfloat16vec", DataType::VECTOR_BFLOAT16, 32, knowhere::metric::L2);
// auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
// schema->set_primary_field_id(i64_fid);
// auto dataset = DataGen(schema, N);
// // auto seg_conf = SegcoreConfig::default_config();
// auto segment = CreateGrowingSegment(schema, empty_index_meta);
// segment->PreInsert(N);
// segment->Insert(0,
// N,
// dataset.row_ids_.data(),
// dataset.timestamps_.data(),
// dataset.raw_);
// auto bfloat16_ptr = dataset.get_col<bfloat16>(bfloat16_vec_fid);
// SegmentInternalInterface& interface = *segment;
// auto num_chunk = interface.num_chunk();
// ASSERT_EQ(num_chunk, upper_div(N, size_per_chunk));
// auto row_count = interface.get_row_count();
// ASSERT_EQ(N, row_count);
// for (auto chunk_id = 0; chunk_id < num_chunk; ++chunk_id) {
// auto bfloat16_span = interface.chunk_data<milvus::BFloat16Vector>(
// bfloat16_vec_fid, chunk_id);
// auto begin = chunk_id * size_per_chunk;
// auto end = std::min((chunk_id + 1) * size_per_chunk, N);
// auto size_of_chunk = end - begin;
// for (int i = 0; i < size_of_chunk; ++i) {
// // std::cout << float16_span.data()[i] << " " << float16_ptr[i + begin * 32] << std::endl;
// ASSERT_EQ(bfloat16_span.data()[i], bfloat16_ptr[i + begin * 32]);
// }
// }
// }
TEST(BFloat16, ShowExecutor) {
auto metric_type = knowhere::metric::L2;
auto node = std::make_unique<BFloat16VectorANNS>();
auto schema = std::make_shared<Schema>();
auto field_id = schema->AddDebugField(
"fakevec", DataType::VECTOR_BFLOAT16, 16, metric_type);
int64_t num_queries = 100L;
auto raw_data = DataGen(schema, num_queries);
auto& info = node->search_info_;
info.metric_type_ = metric_type;
info.topk_ = 20;
info.field_id_ = field_id;
node->predicate_ = std::nullopt;
ShowPlanNodeVisitor show_visitor;
PlanNodePtr base(node.release());
auto res = show_visitor.call_child(*base);
auto dup = res;
std::cout << dup.dump(4);
}
TEST(BFloat16, ExecWithoutPredicateFlat) {
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_BFLOAT16, 32, knowhere::metric::L2);
schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
int64_t N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto vec_ptr = dataset.get_col<bfloat16>(vec_fid);
auto num_queries = 5;
auto ph_group_raw = CreateBFloat16PlaceholderGroup(num_queries, 32, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
std::vector<std::vector<std::string>> results;
auto json = SearchResultToJson(*sr);
std::cout << json.dump(2);
}
TEST(BFloat16, GetVector) {
auto metricType = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_BFLOAT16, 128, metricType);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"},
{"metric_type", metricType},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_growing = CreateGrowingSegment(schema, metaPtr, 1, config);
auto segment = dynamic_cast<SegmentGrowingImpl*>(segment_growing.get());
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<bfloat16>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()->mutable_vectors()->bfloat16_vector();
EXPECT_TRUE(vector.size() == num_inserted * dim * sizeof(bfloat16));
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(
reinterpret_cast<bfloat16*>(vector.data())[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
}
TEST(BFloat16, RetrieveEmpty) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec = schema->AddDebugField(
"vector_64", DataType::VECTOR_BFLOAT16, DIM, knowhere::metric::L2);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
auto choose = [=](int i) { return i * 3 % N; };
auto segment = CreateSealedSegment(schema);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<int64_t> values;
for (int i = 0; i < req_size; ++i) {
values.emplace_back(choose(i));
}
auto term_expr = std::make_unique<query::TermExprImpl<int64_t>>(
milvus::query::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values,
proto::plan::GenericValue::kInt64Val);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->predicate_ = std::move(term_expr);
std::vector<FieldId> target_offsets{fid_64, fid_vec};
plan->field_ids_ = target_offsets;
auto retrieve_results = segment->Retrieve(
nullptr, plan.get(), 100, DEFAULT_MAX_OUTPUT_SIZE, false);
Assert(retrieve_results->fields_data_size() == target_offsets.size());
auto field0 = retrieve_results->fields_data(0);
auto field1 = retrieve_results->fields_data(1);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
Assert(field0_data.data_size() == 0);
Assert(field1.vectors().bfloat16_vector().size() == 0);
}
TEST(BFloat16, ExecWithPredicate) {
auto schema = std::make_shared<Schema>();
schema->AddDebugField(
"fakevec", DataType::VECTOR_BFLOAT16, 16, knowhere::metric::L2);
schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
const char* raw_plan = R"(vector_anns: <
field_id: 100
predicates: <
binary_range_expr: <
column_info: <
field_id: 101
data_type: Float
>
lower_inclusive: true,
upper_inclusive: false,
lower_value: <
float_val: -1
>
upper_value: <
float_val: 1
>
>
>
query_info: <
topk: 5
round_decimal: 3
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0"
>)";
int64_t N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 5;
auto ph_group_raw = CreateBFloat16PlaceholderGroup(num_queries, 16, 1024);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
int topk = 5;
query::Json json = SearchResultToJson(*sr);
std::cout << json.dump(2);
}