milvus/internal/core/unittest/test_chunk_cache.cpp

278 lines
11 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "fmt/format.h"
#include "common/Schema.h"
#include "test_utils/DataGen.h"
#include "test_utils/storage_test_utils.h"
#include "storage/ChunkCache.h"
#include "storage/LocalChunkManagerSingleton.h"
#define DEFAULT_READ_AHEAD_POLICY "willneed"
class ChunkCacheTest : public testing::TestWithParam</*mmap enabled*/ bool> {
public:
void
SetUp() override {
mcm = milvus::storage::MmapManager::GetInstance().GetMmapChunkManager();
mcm->Register(descriptor);
}
void
TearDown() override {
mcm->UnRegister(descriptor);
}
const char* dense_file_name = "chunk_cache_test/insert_log/2/101/1000000";
const char* sparse_file_name = "chunk_cache_test/insert_log/2/102/1000000";
milvus::storage::MmapChunkManagerPtr mcm;
milvus::segcore::SegcoreConfig config;
milvus::storage::MmapChunkDescriptorPtr descriptor =
std::shared_ptr<milvus::storage::MmapChunkDescriptor>(
new milvus::storage::MmapChunkDescriptor(
{101, SegmentType::Sealed}));
};
INSTANTIATE_TEST_SUITE_P(ChunkCacheTestSuite,
ChunkCacheTest,
testing::Values(true, false));
TEST_P(ChunkCacheTest, Read) {
auto N = 10000;
auto dim = 128;
auto dense_metric_type = knowhere::metric::L2;
auto sparse_metric_type = knowhere::metric::IP;
auto schema = std::make_shared<milvus::Schema>();
auto fake_dense_vec_id = schema->AddDebugField(
"fakevec", milvus::DataType::VECTOR_FLOAT, dim, dense_metric_type);
auto i64_fid = schema->AddDebugField("counter", milvus::DataType::INT64);
auto fake_sparse_vec_id =
schema->AddDebugField("fakevec_sparse",
milvus::DataType::VECTOR_SPARSE_FLOAT,
dim,
sparse_metric_type);
schema->set_primary_field_id(i64_fid);
auto dataset = milvus::segcore::DataGen(schema, N);
auto dense_field_data_meta =
milvus::storage::FieldDataMeta{1, 2, 3, fake_dense_vec_id.get()};
auto sparse_field_data_meta =
milvus::storage::FieldDataMeta{1, 2, 3, fake_sparse_vec_id.get()};
auto dense_field_meta = milvus::FieldMeta(milvus::FieldName("fakevec"),
fake_dense_vec_id,
milvus::DataType::VECTOR_FLOAT,
dim,
dense_metric_type,
false);
auto sparse_field_meta =
milvus::FieldMeta(milvus::FieldName("fakevec_sparse"),
fake_sparse_vec_id,
milvus::DataType::VECTOR_SPARSE_FLOAT,
dim,
sparse_metric_type,
false);
auto lcm = milvus::storage::LocalChunkManagerSingleton::GetInstance()
.GetChunkManager();
auto dense_data = dataset.get_col<float>(fake_dense_vec_id);
auto sparse_data =
dataset.get_col<knowhere::sparse::SparseRow<float>>(fake_sparse_vec_id);
auto data_slices = std::vector<void*>{dense_data.data()};
auto slice_sizes = std::vector<int64_t>{static_cast<int64_t>(N)};
auto slice_names = std::vector<std::string>{dense_file_name};
PutFieldData(lcm.get(),
data_slices,
slice_sizes,
slice_names,
dense_field_data_meta,
dense_field_meta);
data_slices = std::vector<void*>{sparse_data.data()};
slice_sizes = std::vector<int64_t>{static_cast<int64_t>(N)};
slice_names = std::vector<std::string>{sparse_file_name};
PutFieldData(lcm.get(),
data_slices,
slice_sizes,
slice_names,
sparse_field_data_meta,
sparse_field_meta);
auto cc = milvus::storage::MmapManager::GetInstance().GetChunkCache();
// validate dense data
const auto& dense_column =
cc->Read(dense_file_name, descriptor, dense_field_meta, GetParam());
Assert(dense_column->DataByteSize() == dim * N * 4);
auto actual_dense = (const float*)(dense_column->Data());
for (auto i = 0; i < N * dim; i++) {
AssertInfo(dense_data[i] == actual_dense[i],
fmt::format(
"expect {}, actual {}", dense_data[i], actual_dense[i]));
}
// validate sparse data
const auto& sparse_column =
cc->Read(sparse_file_name, descriptor, sparse_field_meta, GetParam());
auto expected_sparse_size = 0;
auto actual_sparse =
(const knowhere::sparse::SparseRow<float>*)(sparse_column->Data());
for (auto i = 0; i < N; i++) {
const auto& actual_sparse_row = actual_sparse[i];
const auto& expect_sparse_row = sparse_data[i];
AssertInfo(
actual_sparse_row.size() == expect_sparse_row.size(),
fmt::format("Incorrect size of sparse row: expect {}, actual {}",
expect_sparse_row.size(),
actual_sparse_row.size()));
auto bytes = actual_sparse_row.data_byte_size();
AssertInfo(
memcmp(actual_sparse_row.data(), expect_sparse_row.data(), bytes) ==
0,
fmt::format("Incorrect data of sparse row: expect {}, actual {}",
expect_sparse_row.data(),
actual_sparse_row.data()));
expected_sparse_size += bytes;
}
ASSERT_EQ(sparse_column->DataByteSize(), expected_sparse_size);
cc->Remove(dense_file_name);
cc->Remove(sparse_file_name);
lcm->Remove(dense_file_name);
lcm->Remove(sparse_file_name);
}
TEST_P(ChunkCacheTest, TestMultithreads) {
auto N = 1000;
auto dim = 128;
auto dense_metric_type = knowhere::metric::L2;
auto sparse_metric_type = knowhere::metric::IP;
auto schema = std::make_shared<milvus::Schema>();
auto fake_dense_vec_id = schema->AddDebugField(
"fakevec", milvus::DataType::VECTOR_FLOAT, dim, dense_metric_type);
auto fake_sparse_vec_id =
schema->AddDebugField("fakevec_sparse",
milvus::DataType::VECTOR_SPARSE_FLOAT,
dim,
sparse_metric_type);
auto i64_fid = schema->AddDebugField("counter", milvus::DataType::INT64);
schema->set_primary_field_id(i64_fid);
auto dataset = milvus::segcore::DataGen(schema, N);
auto dense_field_data_meta =
milvus::storage::FieldDataMeta{1, 2, 3, fake_dense_vec_id.get()};
auto sparse_field_data_meta =
milvus::storage::FieldDataMeta{1, 2, 3, fake_sparse_vec_id.get()};
auto dense_field_meta = milvus::FieldMeta(milvus::FieldName("fakevec"),
fake_dense_vec_id,
milvus::DataType::VECTOR_FLOAT,
dim,
dense_metric_type,
false);
auto sparse_field_meta =
milvus::FieldMeta(milvus::FieldName("fakevec_sparse"),
fake_sparse_vec_id,
milvus::DataType::VECTOR_SPARSE_FLOAT,
dim,
sparse_metric_type,
false);
auto lcm = milvus::storage::LocalChunkManagerSingleton::GetInstance()
.GetChunkManager();
auto dense_data = dataset.get_col<float>(fake_dense_vec_id);
auto sparse_data =
dataset.get_col<knowhere::sparse::SparseRow<float>>(fake_sparse_vec_id);
auto dense_data_slices = std::vector<void*>{dense_data.data()};
auto sparse_data_slices = std::vector<void*>{sparse_data.data()};
auto slice_sizes = std::vector<int64_t>{static_cast<int64_t>(N)};
auto dense_slice_names = std::vector<std::string>{dense_file_name};
auto sparse_slice_names = std::vector<std::string>{sparse_file_name};
PutFieldData(lcm.get(),
dense_data_slices,
slice_sizes,
dense_slice_names,
dense_field_data_meta,
dense_field_meta);
PutFieldData(lcm.get(),
sparse_data_slices,
slice_sizes,
sparse_slice_names,
sparse_field_data_meta,
sparse_field_meta);
auto cc = milvus::storage::MmapManager::GetInstance().GetChunkCache();
constexpr int threads = 16;
std::vector<int64_t> total_counts(threads);
auto executor = [&](int thread_id) {
const auto& dense_column =
cc->Read(dense_file_name, descriptor, dense_field_meta, GetParam());
Assert(dense_column->DataByteSize() == dim * N * 4);
auto actual_dense = (const float*)dense_column->Data();
for (auto i = 0; i < N * dim; i++) {
AssertInfo(
dense_data[i] == actual_dense[i],
fmt::format(
"expect {}, actual {}", dense_data[i], actual_dense[i]));
}
const auto& sparse_column = cc->Read(
sparse_file_name, descriptor, sparse_field_meta, GetParam());
auto actual_sparse =
(const knowhere::sparse::SparseRow<float>*)sparse_column->Data();
for (auto i = 0; i < N; i++) {
const auto& actual_sparse_row = actual_sparse[i];
const auto& expect_sparse_row = sparse_data[i];
AssertInfo(actual_sparse_row.size() == expect_sparse_row.size(),
fmt::format(
"Incorrect size of sparse row: expect {}, actual {}",
expect_sparse_row.size(),
actual_sparse_row.size()));
auto bytes = actual_sparse_row.data_byte_size();
AssertInfo(memcmp(actual_sparse_row.data(),
expect_sparse_row.data(),
bytes) == 0,
fmt::format(
"Incorrect data of sparse row: expect {}, actual {}",
expect_sparse_row.data(),
actual_sparse_row.data()));
}
};
std::vector<std::thread> pool;
for (int i = 0; i < threads; ++i) {
pool.emplace_back(executor, i);
}
for (auto& thread : pool) {
thread.join();
}
cc->Remove(dense_file_name);
cc->Remove(sparse_file_name);
lcm->Remove(dense_file_name);
lcm->Remove(sparse_file_name);
}