A cloud-native vector database, storage for next generation AI applications
 
 
 
 
 
 
Go to file
peng.xu 1766a316c9 Merge branch 'branch-0.4.0' into 'branch-0.4.0'
MS-409 Using new scheduler

See merge request megasearch/milvus!417

Former-commit-id: 82972459227e5f45990a4f59a56cb99f15721704
2019-08-23 21:15:24 +08:00
ci merge 0.3.1 2019-08-21 18:35:57 +08:00
cpp solve conflicts 2019-08-23 21:08:41 +08:00
docs
install
pyengine
python
.dockerignore
.gitignore add knowhere 2019-08-08 16:32:17 +08:00
CHANGELOGS.md MS-345 Add Node Test 2019-08-13 16:45:39 +08:00
CONTRIBUTING.md
Dockerfile
INSTALL.md
LICENSE.md
README.md
environment.yaml
requirements.txt

README.md

Vecwise Engine Dev Guide

Install via Conda

  1. Install Miniconda first

    • bash vecwise_engine/install/miniconda.sh
  2. Create environment

    • conda env create -f vecwise_engine/environment.yaml
  3. Test your installation

Install via Docker

  1. Install nvidia-docker

  2. docker build -t cuda9.0/VecEngine .

  3. docker run -it cuda9.0/VecEngine bash

Create Database

  1. Install MySQL

    • sudo apt-get update
    • sudo apt-get install mariadb-server
  2. Create user and database:

    • create user vecwise;
    • create database vecdata;
    • grant all privileges on vecdata.* to 'vecwise'@'%';
    • flush privileges;
  3. Create table:

    • cd vecwise_engine/pyengine && python manager.py create_all