milvus/tests/python_client/deploy/scripts/utils.py

222 lines
8.1 KiB
Python

import copy
import time
import pymilvus
from pymilvus import (
FieldSchema, CollectionSchema, DataType,
Collection, list_collections,
)
pymilvus_version = pymilvus.__version__
all_index_types = ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "HNSW", "ANNOY"]
default_index_params = [{}, {"nlist": 128}, {"nlist": 128}, {"nlist": 128, "m": 16, "nbits": 8},
{"M": 48, "efConstruction": 500}, {"n_trees": 50}]
index_params_map = dict(zip(all_index_types, default_index_params))
NUM_REPLICAS = 2
def filter_collections_by_prefix(prefix):
col_list = list_collections()
res = []
for col in col_list:
if col.startswith(prefix):
res.append(col)
return res
def gen_search_param(index_type, metric_type="L2"):
search_params = []
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
for nprobe in [10]:
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
for nprobe in [10]:
bin_search_params = {"metric_type": "HAMMING", "params": {"nprobe": nprobe}}
search_params.append(bin_search_params)
elif index_type in ["HNSW"]:
for ef in [64]:
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type == "ANNOY":
for search_k in [1000]:
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
search_params.append(annoy_search_param)
else:
print("Invalid index_type.")
raise Exception("Invalid index_type.")
return search_params
def get_collections(prefix, check=False):
print("\nList collections...")
col_list = filter_collections_by_prefix(prefix)
print(f"collections_nums: {len(col_list)}")
# list entities if collections
for name in col_list:
c = Collection(name=name)
if pymilvus_version >= "2.2.0":
c.flush()
else:
c.num_entities
num_entities = c.num_entities
print(f"{name}: {num_entities}")
if check:
assert num_entities >= 3000
return col_list
def create_collections_and_insert_data(prefix, flush=True, count=3000, collection_cnt=11):
import random
dim = 128
nb = count // 10
default_fields = [
FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="random_value", dtype=DataType.DOUBLE),
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")
for index_name in all_index_types[:collection_cnt]:
print("\nCreate collection...")
col_name = prefix + index_name
collection = Collection(name=col_name, schema=default_schema)
print(f"collection name: {col_name}")
print(f"begin insert, count: {count} nb: {nb}")
times = int(count // nb)
total_time = 0.0
vectors = [[random.random() for _ in range(dim)] for _ in range(count)]
for j in range(times):
start_time = time.time()
collection.insert(
[
[i for i in range(nb * j, nb * j + nb)],
[float(random.randrange(-20, -10)) for _ in range(nb)],
vectors[nb*j:nb*j+nb]
]
)
end_time = time.time()
print(f"[{j+1}/{times}] insert {nb} data, time: {end_time - start_time:.4f}")
total_time += end_time - start_time
print(f"end insert, time: {total_time:.4f}")
if flush:
print("Get collection entities")
start_time = time.time()
if pymilvus_version >= "2.2.0":
collection.flush()
else:
collection.num_entities
print(f"collection entities: {collection.num_entities}")
end_time = time.time()
print("Get collection entities time = %.4fs" % (end_time - start_time))
print("\nList collections...")
print(get_collections(prefix))
def create_index_flat():
# create index
default_flat_index = {"index_type": "FLAT", "params": {}, "metric_type": "L2"}
all_col_list = list_collections()
col_list = []
for col_name in all_col_list:
if "FLAT" in col_name and "task" in col_name and "IVF" not in col_name:
col_list.append(col_name)
print("\nCreate index for FLAT...")
for col_name in col_list:
c = Collection(name=col_name)
print(c)
t0 = time.time()
c.create_index(field_name="float_vector", index_params=default_flat_index)
print(f"create index time: {time.time() - t0:.4f}")
def create_index(prefix):
# create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
col_list = get_collections(prefix)
print("\nCreate index...")
for col_name in col_list:
c = Collection(name=col_name)
index_name = col_name.replace(prefix, "")
print(index_name)
print(c)
index = copy.deepcopy(default_index)
index["index_type"] = index_name
index["params"] = index_params_map[index_name]
if index_name in ["BIN_FLAT", "BIN_IVF_FLAT"]:
index["metric_type"] = "HAMMING"
t0 = time.time()
c.create_index(field_name="float_vector", index_params=index)
print(f"create index time: {time.time() - t0:.4f}")
def release_collection(prefix):
col_list = get_collections(prefix)
print("release collection")
for col_name in col_list:
c = Collection(name=col_name)
c.release()
def load_and_search(prefix, replicas=1):
print("search data starts")
col_list = get_collections(prefix)
for col_name in col_list:
c = Collection(name=col_name)
print(f"collection name: {col_name}")
print("load collection")
if replicas == 1:
t0 = time.time()
c.load()
print(f"load time: {time.time() - t0:.4f}")
if replicas > 1:
print("release collection before load if replicas > 1")
t0 = time.time()
c.release()
print(f"release time: {time.time() - t0:.4f}")
t0 = time.time()
c.load(replica_number=replicas)
print(f"load time: {time.time() - t0:.4f}")
print(c.get_replicas())
topK = 5
vectors = [[1.0 for _ in range(128)] for _ in range(3000)]
index_name = col_name.replace(prefix, "")
search_params = gen_search_param(index_name)[0]
print(search_params)
# search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
start_time = time.time()
print(f"\nSearch...")
# define output_fields of search result
v_search = vectors[:1]
res = c.search(
v_search, "float_vector", search_params, topK,
"count > 500", output_fields=["count", "random_value"], timeout=120
)
end_time = time.time()
# show result
for hits in res:
for hit in hits:
# Get value of the random value field for search result
print(hit, hit.entity.get("random_value"))
ids = hits.ids
assert len(ids) == topK, f"get {len(ids)} results, but topK is {topK}"
print(ids)
assert len(res) == len(v_search), f"get {len(res)} results, but search num is {len(v_search)}"
print("search latency: %.4fs" % (end_time - start_time))
t0 = time.time()
expr = "count in [2,4,6,8]"
output_fields = ["count", "random_value"]
res = c.query(expr, output_fields, timeout=120)
sorted_res = sorted(res, key=lambda k: k['count'])
for r in sorted_res:
print(r)
t1 = time.time()
assert len(res) == 4
print("query latency: %.4fs" % (t1 - t0))
# c.release()
print("###########")
print("search data ends")