A cloud-native vector database, storage for next generation AI applications
 
 
 
 
 
 
Go to file
groot 1336716d39 Merge remote-tracking branch 'source/branch-0.3.0' into branch-0.3.0
Former-commit-id: d8e6a436cd456050a2ed576129e5727fb71a495b
2019-06-17 18:49:35 +08:00
cpp Merge remote-tracking branch 'source/branch-0.3.0' into branch-0.3.0 2019-06-17 18:49:35 +08:00
docs MS-4 Refactor the code structure 2019-05-26 14:46:38 +08:00
install
pyengine
python Merge branch 'branch-0.3.0' of http://192.168.1.105:6060/xuan.yang/vecwise_engine into branch-0.3.0 2019-06-13 17:55:46 +08:00
.dockerignore
.gitignore MS-4 Refactor the code structure 2019-05-26 14:46:38 +08:00
CHANGELOGS.md Update CHANGELOGS.md 2019-05-26 19:28:28 +08:00
CONTRIBUTING.md MS-4 Refactor the code structure 2019-05-26 14:46:38 +08:00
Dockerfile
INSTALL.md MS-4 Refactor the code structure 2019-05-26 14:46:38 +08:00
LICENSE.md MS-4 Refactor the code structure 2019-05-26 14:46:38 +08:00
README.md
environment.yaml
requirements.txt

README.md

Vecwise Engine Dev Guide

Install via Conda

  1. Install Miniconda first

    • bash vecwise_engine/install/miniconda.sh
  2. Create environment

    • conda env create -f vecwise_engine/environment.yaml
  3. Test your installation

Install via Docker

  1. Install nvidia-docker

  2. docker build -t cuda9.0/VecEngine .

  3. docker run -it cuda9.0/VecEngine bash

Create Database

  1. Install MySQL

    • sudo apt-get update
    • sudo apt-get install mariadb-server
  2. Create user and database:

    • create user vecwise;
    • create database vecdata;
    • grant all privileges on vecdata.* to 'vecwise'@'%';
    • flush privileges;
  3. Create table:

    • cd vecwise_engine/pyengine && python manager.py create_all