mirror of https://github.com/milvus-io/milvus.git
825 lines
42 KiB
Python
825 lines
42 KiB
Python
import pytest
|
|
from base.client_v2_base import TestMilvusClientV2Base
|
|
from utils.util_log import test_log as log
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_pymilvus import *
|
|
|
|
prefix = "milvus_client_api_query"
|
|
epsilon = ct.epsilon
|
|
default_nb = ct.default_nb
|
|
default_nb_medium = ct.default_nb_medium
|
|
default_nq = ct.default_nq
|
|
default_dim = ct.default_dim
|
|
default_limit = ct.default_limit
|
|
default_search_exp = "id >= 0"
|
|
exp_res = "exp_res"
|
|
default_search_string_exp = "varchar >= \"0\""
|
|
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
|
|
default_invaild_string_exp = "varchar >= 0"
|
|
default_json_search_exp = "json_field[\"number\"] >= 0"
|
|
perfix_expr = 'varchar like "0%"'
|
|
default_search_field = ct.default_float_vec_field_name
|
|
default_search_params = ct.default_search_params
|
|
default_primary_key_field_name = "id"
|
|
default_vector_field_name = "vector"
|
|
default_float_field_name = ct.default_float_field_name
|
|
default_bool_field_name = ct.default_bool_field_name
|
|
default_string_field_name = ct.default_string_field_name
|
|
default_int32_array_field_name = ct.default_int32_array_field_name
|
|
default_string_array_field_name = ct.default_string_array_field_name
|
|
|
|
|
|
class TestMilvusClientQueryInvalid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_query_not_all_required_params(self):
|
|
"""
|
|
target: test query (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. query using ids
|
|
error = {ct.err_code: 65535, ct.err_msg: f"empty expression should be used with limit"}
|
|
self.query(client, collection_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
|
|
class TestMilvusClientQueryValid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_query_default(self):
|
|
"""
|
|
target: test query (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. query using ids
|
|
self.query(client, collection_name, ids=[i for i in range(default_nb)],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 4. query using filter
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_query_output_fields(self):
|
|
"""
|
|
target: test query (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. query using ids
|
|
self.query(client, collection_name, ids=[i for i in range(default_nb)],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 4. query using filter
|
|
res = self.query(client, collection_name, filter=default_search_exp,
|
|
output_fields=[default_primary_key_field_name, default_float_field_name,
|
|
default_string_field_name, default_vector_field_name],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert set(res[0].keys()) == {default_primary_key_field_name, default_vector_field_name,
|
|
default_float_field_name, default_string_field_name}
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_query_output_fields_dynamic_name(self):
|
|
"""
|
|
target: test query (high level api) normal case
|
|
method: create connection, collection, insert, add field name(same as dynamic name) and query
|
|
expected: query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
dim = 8
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=True)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
self.add_collection_field(client, collection_name, field_name=default_string_field_name,
|
|
data_type=DataType.VARCHAR, nullable=True, default_value="default", max_length=64)
|
|
for row in rows:
|
|
row[default_string_field_name] = "default"
|
|
# 3. query using ids
|
|
self.query(client, collection_name, ids=[i for i in range(default_nb)],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 4. query using filter
|
|
res = self.query(client, collection_name, filter=default_search_exp,
|
|
output_fields=[f'$meta["{default_string_field_name}"]'],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: [{"id": item["id"]} for item in rows],
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert set(res[0].keys()) == {default_primary_key_field_name}
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_query_output_fields_all(self):
|
|
"""
|
|
target: test query (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. query using ids
|
|
self.query(client, collection_name, ids=[i for i in range(default_nb)],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 4. query using filter
|
|
res = self.query(client, collection_name, filter=default_search_exp,
|
|
output_fields=["*"],
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert set(res[0].keys()) == {default_primary_key_field_name, default_vector_field_name,
|
|
default_float_field_name, default_string_field_name}
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_query_limit(self):
|
|
"""
|
|
target: test query (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. query using ids
|
|
limit = 5
|
|
self.query(client, collection_name, ids=[i for i in range(default_nb)],
|
|
limit=limit,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows[:limit],
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name[:limit]})
|
|
# 4. query using filter
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
limit=limit,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows[:limit],
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name[:limit]})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("sample_rate", [0.7, 0.5, 0.01])
|
|
def test_milvus_client_query_random_sample(self, sample_rate):
|
|
"""
|
|
target: test query random sample
|
|
method: create connection, collection, insert and query
|
|
expected: query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
vectors = cf.gen_vectors(default_nb, default_dim)
|
|
rows = [
|
|
{
|
|
default_primary_key_field_name: i,
|
|
default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0,
|
|
default_string_field_name: cf.generate_random_sentence("English")
|
|
} for i in range(default_nb)
|
|
]
|
|
self.insert(client, collection_name, rows)
|
|
expr = f"{default_string_field_name} like '%red%'"
|
|
|
|
# 3. query without sample rate
|
|
all_res = self.query(client, collection_name, filter=expr)[0]
|
|
exp_num = max(1, int(len(all_res) * sample_rate))
|
|
|
|
# 4. query using sample rate
|
|
expr = expr + f" && random_sample({sample_rate})"
|
|
sample_res = self.query(client, collection_name, filter=expr)[0]
|
|
log.info(exp_num)
|
|
assert len(sample_res) == exp_num
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("sample_rate", [1, 0, -9])
|
|
def test_milvus_client_query_invalid_sample_rate(self, sample_rate):
|
|
"""
|
|
target: test query random sample
|
|
method: create connection, collection, insert and query
|
|
expected: query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
vectors = cf.gen_vectors(1, default_dim)
|
|
rows = [
|
|
{
|
|
default_primary_key_field_name: i,
|
|
default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0,
|
|
default_string_field_name: cf.generate_random_sentence("English")
|
|
} for i in range(1)
|
|
]
|
|
self.insert(client, collection_name, rows)
|
|
expr = f"{default_string_field_name} like '%red%' && random_sample({sample_rate})"
|
|
|
|
# 3. query
|
|
error = {ct.err_code: 999,
|
|
ct.err_msg: "the sample factor should be between 0 and 1 and not too close to 0 or 1"}
|
|
self.query(client, collection_name, filter=expr,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_query_json_modulo_operator(self):
|
|
"""
|
|
target: test query with modulo operator on JSON field values
|
|
method: create collection with JSON field, insert data with numeric values, test modulo filters
|
|
expected: modulo operations should work correctly and return all matching results
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection with JSON field
|
|
schema, _ = self.create_schema(client, enable_dynamic_field=False)
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field("json_field", DataType.JSON, nullable=True)
|
|
index_params, _ = self.prepare_index_params(client)
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, schema=schema, index_params=index_params, consistency_level="Strong")
|
|
|
|
# 2. insert 3000 rows with various numeric values
|
|
nb = 3000
|
|
rng = np.random.default_rng(seed=19530)
|
|
|
|
# Store original data for verification
|
|
rows = []
|
|
all_numbers = []
|
|
all_nested_numbers = []
|
|
|
|
for i in range(nb):
|
|
# Generate diverse numeric values
|
|
if i % 5 == 0:
|
|
# Some large numbers
|
|
numeric_value = random.randint(100000, 999999)
|
|
elif i % 3 == 0:
|
|
# Some medium numbers
|
|
numeric_value = random.randint(1000, 9999)
|
|
else:
|
|
# Regular sequential numbers
|
|
numeric_value = i
|
|
|
|
nested_value = i * 7 + (i % 13) # Different pattern for nested
|
|
|
|
all_numbers.append(numeric_value)
|
|
all_nested_numbers.append(nested_value)
|
|
|
|
rows.append({
|
|
default_primary_key_field_name: i,
|
|
default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
"json_field": {
|
|
"number": numeric_value,
|
|
"index": i,
|
|
"data": {"nested_number": nested_value}
|
|
}
|
|
})
|
|
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# 3. Test modulo operations with different modulo values and remainders
|
|
test_cases = [
|
|
(10, list(range(10))), # mod 10 - all remainders 0-9
|
|
(2, [0, 1]), # mod 2 - even/odd
|
|
(3, [0, 1, 2]), # mod 3
|
|
(7, list(range(7))), # mod 7 - all remainders 0-6
|
|
(13, [0, 5, 12]), # mod 13 - selected remainders
|
|
]
|
|
|
|
for modulo, remainders in test_cases:
|
|
log.info(f"\nTesting modulo {modulo}")
|
|
|
|
for remainder in remainders:
|
|
# Calculate expected results from original data
|
|
expected_ids = [i for i, num in enumerate(all_numbers) if num % modulo == remainder]
|
|
expected_count = len(expected_ids)
|
|
|
|
# Query and get results
|
|
filter_expr = f'json_field["number"] % {modulo} == {remainder}'
|
|
res, _ = self.query(client, collection_name, filter=filter_expr,
|
|
output_fields=["json_field", default_primary_key_field_name])
|
|
|
|
# Extract actual IDs from results
|
|
actual_ids = sorted([item[default_primary_key_field_name] for item in res])
|
|
expected_ids_sorted = sorted(expected_ids)
|
|
|
|
log.info(f"Modulo {modulo} remainder {remainder}: expected {expected_count}, got {len(res)} results")
|
|
|
|
# Verify we got exactly the expected results
|
|
assert len(res) == expected_count, \
|
|
f"Expected {expected_count} results for % {modulo} == {remainder}, got {len(res)}"
|
|
assert actual_ids == expected_ids_sorted, \
|
|
f"Result IDs don't match expected IDs for % {modulo} == {remainder}"
|
|
|
|
# Also verify each result is correct
|
|
for item in res:
|
|
actual_remainder = item["json_field"]["number"] % modulo
|
|
assert actual_remainder == remainder, \
|
|
f"Number {item['json_field']['number']} % {modulo} = {actual_remainder}, expected {remainder}"
|
|
|
|
# Test nested field
|
|
expected_nested_ids = [i for i, num in enumerate(all_nested_numbers) if num % modulo == remainder]
|
|
nested_filter = f'json_field["data"]["nested_number"] % {modulo} == {remainder}'
|
|
nested_res, _ = self.query(client, collection_name, filter=nested_filter,
|
|
output_fields=["json_field", default_primary_key_field_name])
|
|
|
|
actual_nested_ids = sorted([item[default_primary_key_field_name] for item in nested_res])
|
|
expected_nested_ids_sorted = sorted(expected_nested_ids)
|
|
|
|
assert len(nested_res) == len(expected_nested_ids), \
|
|
f"Expected {len(expected_nested_ids)} nested results for % {modulo} == {remainder}, got {len(nested_res)}"
|
|
assert actual_nested_ids == expected_nested_ids_sorted, \
|
|
f"Nested result IDs don't match expected IDs for % {modulo} == {remainder}"
|
|
|
|
|
|
# Test combining modulo with other conditions
|
|
combined_expr = 'json_field["number"] % 2 == 0 && json_field["index"] < 100'
|
|
expected_combined = [i for i in range(min(100, nb)) if all_numbers[i] % 2 == 0]
|
|
res_combined, _ = self.query(client, collection_name, filter=combined_expr,
|
|
output_fields=["json_field", default_primary_key_field_name])
|
|
actual_combined_ids = sorted([item[default_primary_key_field_name] for item in res_combined])
|
|
|
|
assert len(res_combined) == len(expected_combined), \
|
|
f"Expected {len(expected_combined)} results for combined filter, got {len(res_combined)}"
|
|
assert actual_combined_ids == sorted(expected_combined), \
|
|
"Results for combined filter don't match expected"
|
|
|
|
log.info(f"All modulo tests passed! Combined filter returned {len(res_combined)} results")
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientGetInvalid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("name",
|
|
["12-s", "12 s", "(mn)", "中文", "%$#",
|
|
"".join("a" for i in range(ct.max_name_length + 1))])
|
|
def test_milvus_client_get_invalid_collection_name(self, name):
|
|
"""
|
|
target: test get interface invalid cases
|
|
method: invalid collection name
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
default_nb = 1000
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
pks = [i for i in range(default_nb)]
|
|
# 3. get first primary key
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name"}
|
|
self.get(client, name, ids=pks[0:1],
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_get_not_exist_collection_name(self):
|
|
"""
|
|
target: test get interface invalid cases
|
|
method: invalid collection name
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
default_nb = 1000
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
pks = [i for i in range(default_nb)]
|
|
# 3. get first primary key
|
|
name = "invalid"
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection[database=default][collection={name}]"}
|
|
self.get(client, name, ids=pks[0:1],
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("invalid_ids", ["中文", "%$#"])
|
|
def test_milvus_client_get_invalid_ids(self, invalid_ids):
|
|
"""
|
|
target: test get interface invalid cases
|
|
method: invalid collection name
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
default_nb = 1000
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. get first primary key
|
|
error = {ct.err_code: 1100, ct.err_msg: f"cannot parse expression"}
|
|
self.get(client, collection_name, ids=invalid_ids,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientGetValid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_get_normal(self):
|
|
"""
|
|
target: test get interface
|
|
method: create connection, collection, insert delete, and search
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
default_nb = 1000
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
pks = [i for i in range(default_nb)]
|
|
# 3. get first primary key
|
|
first_pk_data = self.get(client, collection_name, ids=pks[0:1])[0]
|
|
assert len(first_pk_data) == len(pks[0:1])
|
|
first_pk_data_1 = self.get(client, collection_name, ids=0)[0]
|
|
assert first_pk_data == first_pk_data_1
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_get_output_fields(self):
|
|
"""
|
|
target: test get interface with output fields
|
|
method: create connection, collection, insert delete, and search
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
default_nb = 1000
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
pks = [i for i in range(default_nb)]
|
|
# 3. get first primary key
|
|
output_fields_array = [default_primary_key_field_name, default_vector_field_name,
|
|
default_float_field_name, default_string_field_name]
|
|
first_pk_data = self.get(client, collection_name, ids=pks[0:1], output_fields=output_fields_array)[0]
|
|
assert len(first_pk_data) == len(pks[0:1])
|
|
assert len(first_pk_data[0]) == len(output_fields_array)
|
|
first_pk_data_1 = self.get(client, collection_name, ids=0, output_fields=output_fields_array)[0]
|
|
assert first_pk_data == first_pk_data_1
|
|
assert len(first_pk_data_1[0]) == len(output_fields_array)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 2056")
|
|
def test_milvus_client_get_normal_string(self):
|
|
"""
|
|
target: test get interface for string field
|
|
method: create connection, collection, insert delete, and search
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, id_type="string", max_length=ct.default_length)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: str(i), default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
pks = [str(i) for i in range(default_nb)]
|
|
# 3. get first primary key
|
|
first_pk_data = self.get(client, collection_name, ids=pks[0:1])[0]
|
|
assert len(first_pk_data) == len(pks[0:1])
|
|
first_pk_data_1 = self.get(client, collection_name, ids="0")[0]
|
|
assert first_pk_data == first_pk_data_1
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.skip(reason="pymilvus issue 2056")
|
|
def test_milvus_client_get_normal_string_output_fields(self):
|
|
"""
|
|
target: test get interface for string field
|
|
method: create connection, collection, insert delete, and search
|
|
expected: search/query successfully without deleted data
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, id_type="string", max_length=ct.default_length)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: str(i), default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
pks = [str(i) for i in range(default_nb)]
|
|
# 3. get first primary key
|
|
output_fields_array = [default_primary_key_field_name, default_vector_field_name,
|
|
default_float_field_name, default_string_field_name]
|
|
first_pk_data = self.get(client, collection_name, ids=pks[0:1], output_fields=output_fields_array)[0]
|
|
assert len(first_pk_data) == len(pks[0:1])
|
|
assert len(first_pk_data[0]) == len(output_fields_array)
|
|
first_pk_data_1 = self.get(client, collection_name, ids="0", output_fields=output_fields_array)[0]
|
|
assert first_pk_data == first_pk_data_1
|
|
assert len(first_pk_data_1[0]) == len(output_fields_array)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientQueryJsonPathIndex(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=["INVERTED"])
|
|
def supported_varchar_scalar_index(self, request):
|
|
yield request.param
|
|
|
|
# @pytest.fixture(scope="function", params=["DOUBLE", "VARCHAR", "json"", "bool"])
|
|
@pytest.fixture(scope="function", params=["DOUBLE"])
|
|
def supported_json_cast_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
|
|
@pytest.mark.parametrize("is_flush", [True, False])
|
|
@pytest.mark.parametrize("is_release", [True, False])
|
|
@pytest.mark.parametrize("single_data_num", [50])
|
|
def test_milvus_client_search_json_path_index_all_expressions(self, enable_dynamic_field, supported_json_cast_type,
|
|
supported_varchar_scalar_index, is_flush, is_release,
|
|
single_data_num):
|
|
"""
|
|
target: test query after json path index with all supported basic expressions
|
|
method: Query after json path index with all supported basic expressions
|
|
step: 1. create collection
|
|
2. insert with different data distribution
|
|
3. flush if specified
|
|
4. query when there is no json path index under all expressions
|
|
5. release if specified
|
|
6. prepare index params with json path index
|
|
7. create json path index
|
|
8. create same json index twice
|
|
9. reload collection if released before to make sure the new index load successfully
|
|
10. sleep for 60s to make sure the new index load successfully without release and reload operations
|
|
11. query after there is json path index under all expressions which should get the same result
|
|
with that without json path index
|
|
expected: query successfully after there is json path index under all expressions which should get the same result
|
|
with that without json path index
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
json_field_name = "json_field"
|
|
schema = self.create_schema(client, enable_dynamic_field=enable_dynamic_field)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
if not enable_dynamic_field:
|
|
schema.add_field(json_field_name, DataType.JSON, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, schema=schema, index_params=index_params)
|
|
# 2. insert with different data distribution
|
|
vectors = cf.gen_vectors(default_nb+60, default_dim)
|
|
inserted_data_distribution = ct.get_all_kind_data_distribution
|
|
nb_single = single_data_num
|
|
for i in range(len(inserted_data_distribution)):
|
|
rows = [{default_primary_key_field_name: j, default_vector_field_name: vectors[j],
|
|
default_string_field_name: f"{j}", json_field_name: inserted_data_distribution[i]} for j in
|
|
range(i * nb_single, (i + 1) * nb_single)]
|
|
assert len(rows) == nb_single
|
|
self.insert(client, collection_name=collection_name, data=rows)
|
|
log.info(f"inserted {nb_single} {inserted_data_distribution[i]}")
|
|
# 3. flush if specified
|
|
if is_flush:
|
|
self.flush(client, collection_name)
|
|
# 4. query when there is no json path index under all expressions
|
|
# skip negative expression for issue 40685
|
|
# "my_json['a'] != 1", "my_json['a'] != 1.0", "my_json['a'] != '1'", "my_json['a'] != 1.1", "my_json['a'] not in [1]"
|
|
express_list = cf.gen_json_field_expressions_all_single_operator()
|
|
compare_dict = {}
|
|
for i in range(len(express_list)):
|
|
json_list = []
|
|
id_list = []
|
|
log.info(f"query with filter {express_list[i]} before json path index is:")
|
|
res = self.query(client, collection_name=collection_name, filter=express_list[i], output_fields=["count(*)"])[0]
|
|
count = res[0]['count(*)']
|
|
log.info(f"The count(*) after query with filter {express_list[i]} before json path index is: {count}")
|
|
res = self.query(client, collection_name=collection_name, filter=express_list[i], output_fields=[f"{json_field_name}"])[0]
|
|
for single in res:
|
|
id_list.append(single[f"{default_primary_key_field_name}"])
|
|
json_list.append(single[f"{json_field_name}"])
|
|
assert count == len(id_list)
|
|
assert count == len(json_list)
|
|
compare_dict.setdefault(f'{i}', {})
|
|
compare_dict[f'{i}']["id_list"] = id_list
|
|
compare_dict[f'{i}']["json_list"] = json_list
|
|
# 5. release if specified
|
|
if is_release:
|
|
self.release_collection(client, collection_name)
|
|
self.drop_index(client, collection_name, default_vector_field_name)
|
|
# 6. prepare index params with json path index
|
|
index_name = "json_index"
|
|
index_params = self.prepare_index_params(client)[0]
|
|
json_path_list = [f"{json_field_name}", f"{json_field_name}[0]", f"{json_field_name}[1]",
|
|
f"{json_field_name}[6]", f"{json_field_name}['a']", f"{json_field_name}['a']['b']",
|
|
f"{json_field_name}['a'][0]", f"{json_field_name}['a'][6]", f"{json_field_name}['a'][0]['b']",
|
|
f"{json_field_name}['a']['b']['c']", f"{json_field_name}['a']['b'][0]['d']",
|
|
f"{json_field_name}[10000]", f"{json_field_name}['a']['c'][0]['d']"]
|
|
index_params.add_index(field_name=default_vector_field_name, index_type="AUTOINDEX", metric_type="COSINE")
|
|
for i in range(len(json_path_list)):
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + f'{i}',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": json_path_list[i]})
|
|
# 7. create json path index
|
|
self.create_index(client, collection_name, index_params)
|
|
# 8. create same json index twice
|
|
self.create_index(client, collection_name, index_params)
|
|
# 9. reload collection if released before to make sure the new index load successfully
|
|
if is_release:
|
|
self.load_collection(client, collection_name)
|
|
else:
|
|
# 10. sleep for 60s to make sure the new index load successfully without release and reload operations
|
|
time.sleep(60)
|
|
# 11. query after there is json path index under all expressions which should get the same result
|
|
# with that without json path index
|
|
for i in range(len(express_list)):
|
|
json_list = []
|
|
id_list = []
|
|
log.info(f"query with filter {express_list[i]} after json path index is:")
|
|
count = self.query(client, collection_name=collection_name, filter=express_list[i],
|
|
output_fields=["count(*)"])[0]
|
|
log.info(f"The count(*) after query with filter {express_list[i]} after json path index is: {count}")
|
|
res = self.query(client, collection_name=collection_name, filter=express_list[i],
|
|
output_fields=[f"{json_field_name}"])[0]
|
|
for single in res:
|
|
id_list.append(single[f"{default_primary_key_field_name}"])
|
|
json_list.append(single[f"{json_field_name}"])
|
|
if len(json_list) != len(compare_dict[f'{i}']["json_list"]):
|
|
log.debug(f"json field after json path index under expression {express_list[i]} is:")
|
|
log.debug(json_list)
|
|
log.debug(f"json field before json path index to be compared under expression {express_list[i]} is:")
|
|
log.debug(compare_dict[f'{i}']["json_list"])
|
|
assert json_list == compare_dict[f'{i}']["json_list"]
|
|
if len(id_list) != len(compare_dict[f'{i}']["id_list"]):
|
|
log.debug(f"primary key field after json path index under expression {express_list[i]} is:")
|
|
log.debug(id_list)
|
|
log.debug(f"primary key field before json path index to be compared under expression {express_list[i]} is:")
|
|
log.debug(compare_dict[f'{i}']["id_list"])
|
|
assert id_list == compare_dict[f'{i}']["id_list"]
|
|
log.info(f"PASS with expression {express_list[i]}")
|