mirror of https://github.com/milvus-io/milvus.git
518 lines
30 KiB
Python
518 lines
30 KiB
Python
import random
|
|
import time
|
|
|
|
import pytest
|
|
from base.client_v2_base import TestMilvusClientV2Base
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_pymilvus import DataType
|
|
import numpy as np
|
|
|
|
prefix = "add_field"
|
|
default_vector_field_name = "vector"
|
|
default_primary_key_field_name = "id"
|
|
default_string_field_name = "varchar"
|
|
default_float_field_name = "float"
|
|
default_new_field_name = "field_new"
|
|
default_dynamic_field_name = "field_new"
|
|
exp_res = "exp_res"
|
|
default_nb = 2000
|
|
default_dim = 128
|
|
default_limit = 10
|
|
|
|
|
|
class TestMilvusClientAddFieldFeature(TestMilvusClientV2Base):
|
|
"""Test cases for add field feature with CaseLabel.L0"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_collection_add_field(self):
|
|
"""
|
|
target: test self create collection normal case about add field
|
|
method: create collection with added field
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
dim = 128
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field("id_string", DataType.VARCHAR, max_length=64, is_primary=True, auto_id=False)
|
|
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field("title", DataType.VARCHAR, max_length=64, is_partition_key=True)
|
|
schema.add_field("nullable_field", DataType.INT64, nullable=True, default_value=10)
|
|
schema.add_field("array_field", DataType.ARRAY, element_type=DataType.INT64, max_capacity=12,
|
|
max_length=64, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index("embeddings", metric_type="COSINE")
|
|
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
check_items = {"collection_name": collection_name,
|
|
"dim": dim,
|
|
"consistency_level": 0,
|
|
"enable_dynamic_field": False,
|
|
"num_partitions": 16,
|
|
"id_name": "id_string",
|
|
"vector_name": "embeddings"}
|
|
self.add_collection_field(client, collection_name, field_name="field_new_int64", data_type=DataType.INT64,
|
|
nullable=True, is_cluster_key=True, mmap_enabled=True)
|
|
self.add_collection_field(client, collection_name, field_name="field_new_var", data_type=DataType.VARCHAR,
|
|
nullable=True, default_vaule="field_new_var", max_length=64, mmap_enabled=True)
|
|
check_items["add_fields"] = ["field_new_int64", "field_new_var"]
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items=check_items)
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['embeddings']
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_compact_with_added_field(self):
|
|
"""
|
|
target: test clustering compaction with added field as cluster key
|
|
method: create connection, collection, insert, add field, insert and compact
|
|
expected: successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
dim = 128
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(default_vector_field_name+"new", DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
index_params.add_index(default_vector_field_name+"new", metric_type="L2")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_vector_field_name+"new": list(rng.random((1, default_dim))[0]),
|
|
default_string_field_name: str(i)} for i in range(10*default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
self.add_collection_field(client, collection_name, field_name=default_new_field_name, data_type=DataType.INT64,
|
|
nullable=True, is_clustering_key=True)
|
|
# 3. insert new field after add field
|
|
rows_new = [
|
|
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_vector_field_name+"new": list(rng.random((1, default_dim))[0]),default_string_field_name: str(i),
|
|
default_new_field_name: random.randint(1, 1000)} for i in range(10*default_nb, 11*default_nb)]
|
|
self.insert(client, collection_name, rows_new)
|
|
self.flush(client, collection_name)
|
|
# 4. compact
|
|
compact_id = self.compact(client, collection_name, is_clustering=True)[0]
|
|
cost = 180
|
|
start = time.time()
|
|
while True:
|
|
time.sleep(1)
|
|
res = self.get_compaction_state(client, compact_id, is_clustering=True)[0]
|
|
if res == "Completed":
|
|
break
|
|
if time.time() - start > cost:
|
|
raise Exception(1, f"Compact after index cost more than {cost}s")
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_with_old_and_added_field(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert, add field, insert old/new field and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
dim = 8
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
|
|
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert before add field
|
|
vectors = cf.gen_vectors(default_nb * 3, dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. add new field
|
|
self.add_collection_field(client, collection_name, field_name=default_new_field_name, data_type=DataType.VARCHAR,
|
|
nullable=True, max_length=64)
|
|
vectors_to_search = [vectors[0]]
|
|
insert_ids = [i for i in range(default_nb)]
|
|
# 4. check old dynamic data search is not impacted after add new field
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
# 5. insert data(old field)
|
|
rows_old = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0,
|
|
default_string_field_name: str(i)} for i in range(default_nb, default_nb * 2)]
|
|
results = self.insert(client, collection_name, rows_old)[0]
|
|
assert results['insert_count'] == default_nb
|
|
insert_ids_with_old_field = [i for i in range(default_nb, default_nb * 2)]
|
|
# 6. insert data(new field)
|
|
rows_new = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i),
|
|
default_new_field_name: default_new_field_name} for i in range(default_nb * 2, default_nb * 3)]
|
|
results = self.insert(client, collection_name, rows_new)[0]
|
|
assert results['insert_count'] == default_nb
|
|
insert_ids_with_new_field = [i for i in range(default_nb * 2, default_nb * 3)]
|
|
# 7. search filtered with the new field
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f'field_new is null',
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids + insert_ids_with_old_field,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"field_new=='field_new'",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids_with_new_field,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_with_added_field(self):
|
|
"""
|
|
target: test upsert (high level api) normal case
|
|
method: create connection, collection, insert, add field, upsert and search
|
|
expected: upsert/search successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert before add field
|
|
vectors = cf.gen_vectors(default_nb * 3, default_dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. add new field
|
|
self.add_collection_field(client, collection_name, field_name=default_new_field_name, data_type=DataType.VARCHAR,
|
|
nullable=True, max_length=64)
|
|
half_default_nb = int (default_nb/2)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i),
|
|
default_new_field_name: "default"} for i in range(half_default_nb)]
|
|
results = self.upsert(client, collection_name, rows)[0]
|
|
assert results['upsert_count'] == half_default_nb
|
|
vectors_to_search = [vectors[0]]
|
|
insert_ids = [i for i in range(half_default_nb)]
|
|
insert_ids_with_new_field = [i for i in range(half_default_nb, default_nb)]
|
|
# 4. search filtered with the new field
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f'field_new is null',
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids_with_new_field,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"field_new=='default'",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("new_field_name", [default_dynamic_field_name, "new_field"])
|
|
def test_milvus_client_search_query_enable_dynamic_and_add_field(self, new_field_name):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert, add field(same as dynamic and different as dynamic) and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
dim = 8
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=True)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
|
|
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert
|
|
vectors = cf.gen_vectors(default_nb, dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i),
|
|
default_dynamic_field_name: 1} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. add new field same as dynamic field name
|
|
default_value = 1
|
|
self.add_collection_field(client, collection_name, field_name=new_field_name, data_type=DataType.INT64,
|
|
nullable=True, default_value=default_value)
|
|
vectors_to_search = [vectors[0]]
|
|
insert_ids = [i for i in range(default_nb)]
|
|
# 4. check old dynamic data search is not impacted after add new field
|
|
self.search(client, collection_name, vectors_to_search, limit=default_limit,
|
|
filter=f'$meta["{default_dynamic_field_name}"] == 1',
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 5. check old dynamic data query is not impacted after add new field
|
|
for row in rows:
|
|
row[new_field_name] = default_value
|
|
self.query(client, collection_name, filter=f'$meta["{default_dynamic_field_name}"] == 1',
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name,
|
|
"vector_type": DataType.FLOAT_VECTOR})
|
|
# 6. search filtered with the new field
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"{new_field_name} == 1",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"{new_field_name} is null",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": 0})
|
|
# 7. query filtered with the new field
|
|
self.query(client, collection_name, filter=f"{new_field_name} == 1",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
self.query(client, collection_name, filter=f"{new_field_name} is null",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: [],
|
|
"pk_name": default_primary_key_field_name})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientAddFieldFeatureInvalid(TestMilvusClientV2Base):
|
|
"""Test invalid cases for add field feature"""
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_vector_field(self):
|
|
"""
|
|
target: test fast create collection with add vector field
|
|
method: create collection name with add vector field
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"not support to add vector field, "
|
|
f"field name = {field_name}: invalid parameter"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.FLOAT_VECTOR,
|
|
nullable=True, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_varchar_field_without_max_length(self):
|
|
"""
|
|
target: test fast create collection with add varchar field without maxlength
|
|
method: create collection name with add varchar field without maxlength
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"type param(max_length) should be specified for "
|
|
f"the field({field_name}) of collection {collection_name}"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.VARCHAR,
|
|
nullable=True, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_as_auto_id(self):
|
|
"""
|
|
target: test fast create collection with add new field as auto id
|
|
method: create collection name with add new field as auto id
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1, ct.err_msg: f"The auto_id can only be specified on the primary key field"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
|
|
nullable=True, auto_id=True, check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_with_disable_nullable(self):
|
|
"""
|
|
target: test fast create collection with add new field as nullable false
|
|
method: create collection name with add new field as nullable false
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"added field must be nullable, please check it, "
|
|
f"field name = {field_name}: invalid parameter"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
|
|
nullable=False, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_as_partition_ley(self):
|
|
"""
|
|
target: test fast create collection with add new field as partition key
|
|
method: create collection name with add new field as partition key
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"not support to add partition key field, "
|
|
f"field name = {field_name}: invalid parameter"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
|
|
nullable=True, is_partition_key=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_exceed_max_length(self):
|
|
"""
|
|
target: test fast create collection with add new field with exceed max length
|
|
method: create collection name with add new field with exceed max length
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"the maximum length specified for the field({field_name}) "
|
|
f"should be in (0, 65535], but got 65536 instead: invalid parameter"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.VARCHAR,
|
|
nullable=True, max_length=65536, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_as_cluster_key(self):
|
|
"""
|
|
target: test fast create collection with add new field as cluster key
|
|
method: create collection with add new field as cluster key(already has cluster key)
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
field_name = default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"already has another clutering key field, "
|
|
f"field name: {field_name}: invalid parameter"}
|
|
schema = self.create_schema(client)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_clustering_key=True)
|
|
|
|
self.create_collection(client, collection_name, schema=schema)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
|
|
nullable=True, is_clustering_key=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_same_other_name(self):
|
|
"""
|
|
target: test fast create collection with add new field as other same name
|
|
method: create collection with add new field as other same name
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
error = {ct.err_code: 1100, ct.err_msg: f"duplicate field name: {default_string_field_name}: invalid parameter"}
|
|
schema = self.create_schema(client)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_clustering_key=True)
|
|
|
|
self.create_collection(client, collection_name, schema=schema)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.add_collection_field(client, collection_name, field_name=default_string_field_name,
|
|
data_type=DataType.VARCHAR, nullable=True, max_length=64,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_collection_add_field_exceed_max_field_number(self):
|
|
"""
|
|
target: test fast create collection with add new field with exceed max field number
|
|
method: create collection name with add new field with exceed max field number
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
# 1. create collection
|
|
dim, field_name = 8, default_new_field_name
|
|
error = {ct.err_code: 1100, ct.err_msg: f"The number of fields has reached the maximum value 64: "
|
|
f"invalid parameter"}
|
|
self.create_collection(client, collection_name, dim)
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
for i in range(62):
|
|
self.add_collection_field(client, collection_name, field_name=f"{field_name}_{i}",
|
|
data_type=DataType.VARCHAR, nullable=True, max_length=64)
|
|
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.VARCHAR,
|
|
nullable=True, max_length=64, check_task=CheckTasks.err_res, check_items=error)
|