milvus/internal/rootcoord/scheduler.go

232 lines
5.4 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rootcoord
import (
"context"
"sync"
"time"
"go.uber.org/atomic"
"go.uber.org/zap"
"github.com/milvus-io/milvus/internal/allocator"
"github.com/milvus-io/milvus/internal/tso"
"github.com/milvus-io/milvus/pkg/log"
"github.com/milvus-io/milvus/pkg/util/lock"
"github.com/milvus-io/milvus/pkg/util/typeutil"
)
type IScheduler interface {
Start()
Stop()
AddTask(t task) error
GetMinDdlTs() Timestamp
}
type scheduler struct {
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
idAllocator allocator.Interface
tsoAllocator tso.Allocator
taskChan chan task
taskHeap typeutil.Heap[task]
lock sync.Mutex
minDdlTs atomic.Uint64
clusterLock *lock.KeyLock[string]
databaseLock *lock.KeyLock[string]
collectionLock *lock.KeyLock[string]
lockMapping map[LockLevel]*lock.KeyLock[string]
}
func GetTaskHeapOrder(t task) Timestamp {
return t.GetTs()
}
func newScheduler(ctx context.Context, idAllocator allocator.Interface, tsoAllocator tso.Allocator) *scheduler {
ctx1, cancel := context.WithCancel(ctx)
// TODO
n := 1024 * 10
taskArr := make([]task, 0)
s := &scheduler{
ctx: ctx1,
cancel: cancel,
idAllocator: idAllocator,
tsoAllocator: tsoAllocator,
taskChan: make(chan task, n),
taskHeap: typeutil.NewObjectArrayBasedMinimumHeap[task, Timestamp](taskArr, GetTaskHeapOrder),
minDdlTs: *atomic.NewUint64(0),
clusterLock: lock.NewKeyLock[string](),
databaseLock: lock.NewKeyLock[string](),
collectionLock: lock.NewKeyLock[string](),
}
s.lockMapping = map[LockLevel]*lock.KeyLock[string]{
ClusterLock: s.clusterLock,
DatabaseLock: s.databaseLock,
CollectionLock: s.collectionLock,
}
return s
}
func (s *scheduler) Start() {
s.wg.Add(1)
go s.taskLoop()
s.wg.Add(1)
go s.syncTsLoop()
}
func (s *scheduler) Stop() {
s.cancel()
s.wg.Wait()
}
func (s *scheduler) execute(task task) {
defer s.setMinDdlTs() // we should update ts, whatever task succeeds or not.
task.SetInQueueDuration()
if err := task.Prepare(task.GetCtx()); err != nil {
task.NotifyDone(err)
return
}
err := task.Execute(task.GetCtx())
task.NotifyDone(err)
}
func (s *scheduler) taskLoop() {
defer s.wg.Done()
for {
select {
case <-s.ctx.Done():
return
case task := <-s.taskChan:
s.execute(task)
}
}
}
// syncTsLoop send a base task into queue periodically, the base task will gain the latest ts which is bigger than
// everyone in the queue. The scheduler will update the ts after the task is finished.
func (s *scheduler) syncTsLoop() {
defer s.wg.Done()
ticker := time.NewTicker(Params.ProxyCfg.TimeTickInterval.GetAsDuration(time.Millisecond))
defer ticker.Stop()
for {
select {
case <-s.ctx.Done():
return
case <-ticker.C:
s.updateLatestTsoAsMinDdlTs()
}
}
}
func (s *scheduler) updateLatestTsoAsMinDdlTs() {
t := newBaseTask(context.Background(), nil)
if err := s.AddTask(&t); err != nil {
log.Warn("failed to update latest ddl ts", zap.Error(err))
}
}
func (s *scheduler) setID(task task) error {
id, err := s.idAllocator.AllocOne()
if err != nil {
return err
}
task.SetID(id)
return nil
}
func (s *scheduler) setTs(task task) error {
ts, err := s.tsoAllocator.GenerateTSO(1)
if err != nil {
return err
}
task.SetTs(ts)
s.taskHeap.Push(task)
return nil
}
func (s *scheduler) enqueue(task task) {
s.taskChan <- task
}
func (s *scheduler) AddTask(task task) error {
if Params.RootCoordCfg.UseLockScheduler.GetAsBool() {
lockKey := task.GetLockerKey()
if lockKey != nil {
return s.executeTaskWithLock(task, lockKey)
}
}
// make sure that setting ts and enqueue is atomic.
s.lock.Lock()
defer s.lock.Unlock()
if err := s.setID(task); err != nil {
return err
}
if err := s.setTs(task); err != nil {
return err
}
s.enqueue(task)
return nil
}
func (s *scheduler) GetMinDdlTs() Timestamp {
return s.minDdlTs.Load()
}
func (s *scheduler) setMinDdlTs() {
s.lock.Lock()
defer s.lock.Unlock()
for s.taskHeap.Len() > 0 && s.taskHeap.Peek().IsFinished() {
t := s.taskHeap.Pop()
s.minDdlTs.Store(t.GetTs())
}
}
func (s *scheduler) executeTaskWithLock(task task, lockerKey LockerKey) error {
if lockerKey == nil {
if err := s.setID(task); err != nil {
return err
}
s.lock.Lock()
if err := s.setTs(task); err != nil {
s.lock.Unlock()
return err
}
s.lock.Unlock()
s.execute(task)
return nil
}
taskLock := s.lockMapping[lockerKey.Level()]
if lockerKey.IsWLock() {
taskLock.Lock(lockerKey.LockKey())
defer taskLock.Unlock(lockerKey.LockKey())
} else {
taskLock.RLock(lockerKey.LockKey())
defer taskLock.RUnlock(lockerKey.LockKey())
}
return s.executeTaskWithLock(task, lockerKey.Next())
}