milvus/internal/proxy/look_aside_balancer.go

338 lines
10 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package proxy
import (
"context"
"math"
"sync"
"time"
"go.uber.org/atomic"
"go.uber.org/zap"
"github.com/milvus-io/milvus-proto/go-api/v2/commonpb"
"github.com/milvus-io/milvus-proto/go-api/v2/milvuspb"
"github.com/milvus-io/milvus/pkg/log"
"github.com/milvus-io/milvus/pkg/proto/internalpb"
"github.com/milvus-io/milvus/pkg/util/conc"
"github.com/milvus-io/milvus/pkg/util/merr"
"github.com/milvus-io/milvus/pkg/util/typeutil"
)
type CostMetrics struct {
cost atomic.Pointer[internalpb.CostAggregation]
executingNQ atomic.Int64
ts atomic.Int64
unavailable atomic.Bool
}
type LookAsideBalancer struct {
clientMgr shardClientMgr
knownNodeInfos *typeutil.ConcurrentMap[int64, nodeInfo]
metricsMap *typeutil.ConcurrentMap[int64, *CostMetrics]
// query node id -> number of consecutive heartbeat failures
failedHeartBeatCounter *typeutil.ConcurrentMap[int64, *atomic.Int64]
// idx for round_robin
idx atomic.Int64
closeCh chan struct{}
closeOnce sync.Once
wg sync.WaitGroup
// param for replica selection
metricExpireInterval int64
checkWorkloadRequestNum int64
workloadToleranceFactor float64
}
func NewLookAsideBalancer(clientMgr shardClientMgr) *LookAsideBalancer {
balancer := &LookAsideBalancer{
clientMgr: clientMgr,
knownNodeInfos: typeutil.NewConcurrentMap[int64, nodeInfo](),
metricsMap: typeutil.NewConcurrentMap[int64, *CostMetrics](),
failedHeartBeatCounter: typeutil.NewConcurrentMap[int64, *atomic.Int64](),
closeCh: make(chan struct{}),
}
balancer.metricExpireInterval = Params.ProxyCfg.CostMetricsExpireTime.GetAsInt64()
balancer.checkWorkloadRequestNum = Params.ProxyCfg.CheckWorkloadRequestNum.GetAsInt64()
balancer.workloadToleranceFactor = Params.ProxyCfg.WorkloadToleranceFactor.GetAsFloat()
return balancer
}
func (b *LookAsideBalancer) Start(ctx context.Context) {
b.wg.Add(1)
go b.checkQueryNodeHealthLoop(ctx)
}
func (b *LookAsideBalancer) Close() {
b.closeOnce.Do(func() {
close(b.closeCh)
b.wg.Wait()
})
}
func (b *LookAsideBalancer) RegisterNodeInfo(nodeInfos []nodeInfo) {
for _, node := range nodeInfos {
b.knownNodeInfos.Insert(node.nodeID, node)
}
}
func (b *LookAsideBalancer) SelectNode(ctx context.Context, availableNodes []int64, nq int64) (int64, error) {
targetNode := int64(-1)
defer func() {
if targetNode != -1 {
metrics, _ := b.metricsMap.GetOrInsert(targetNode, &CostMetrics{})
metrics.executingNQ.Add(nq)
}
}()
// after assign n request, try to assign the task to a query node which has much less workload
idx := b.idx.Load()
if idx%b.checkWorkloadRequestNum != 0 {
for i := 0; i < len(availableNodes); i++ {
targetNode = availableNodes[int(idx)%len(availableNodes)]
targetMetrics, ok := b.metricsMap.Get(targetNode)
if !ok || !targetMetrics.unavailable.Load() {
break
}
}
if targetNode == -1 {
return targetNode, merr.WrapErrServiceUnavailable("all available nodes are unreachable")
}
b.idx.Inc()
return targetNode, nil
}
// compute each query node's workload score, select the one with least workload score
minScore := int64(math.MaxInt64)
maxScore := int64(0)
nowTs := time.Now().UnixMilli()
for i := 0; i < len(availableNodes); i++ {
node := availableNodes[(int(idx)+i)%len(availableNodes)]
score := int64(0)
metrics, ok := b.metricsMap.Get(node)
if ok {
if metrics.unavailable.Load() {
continue
}
executingNQ := metrics.executingNQ.Load()
// for multi-replica cases, when there are no task which waiting in queue,
// the response time will effect the score, to prevent the score based on a too old metrics
// we expire the cost metrics if no task in queue.
if executingNQ != 0 || nowTs-metrics.ts.Load() <= b.metricExpireInterval {
score = b.calculateScore(node, metrics.cost.Load(), executingNQ)
}
}
if score < minScore || targetNode == -1 {
minScore = score
targetNode = node
}
if score > maxScore {
maxScore = score
}
}
if float64(maxScore-minScore)/float64(minScore) <= b.workloadToleranceFactor {
// if all query node has nearly same workload, just fall back to round_robin
b.idx.Inc()
}
if targetNode == -1 {
return targetNode, merr.WrapErrServiceUnavailable("all available nodes are unreachable")
}
return targetNode, nil
}
// when task canceled, should reduce executing total nq cost
func (b *LookAsideBalancer) CancelWorkload(node int64, nq int64) {
metrics, ok := b.metricsMap.Get(node)
if ok {
metrics.executingNQ.Sub(nq)
}
}
// UpdateCostMetrics used for cache some metrics of recent search/query cost
func (b *LookAsideBalancer) UpdateCostMetrics(node int64, cost *internalpb.CostAggregation) {
// cache the latest query node cost metrics for updating the score
if cost != nil {
metrics, ok := b.metricsMap.Get(node)
if !ok {
metrics = &CostMetrics{}
b.metricsMap.Insert(node, metrics)
}
metrics.cost.Store(cost)
metrics.ts.Store(time.Now().UnixMilli())
metrics.unavailable.CompareAndSwap(true, false)
}
}
// calculateScore compute the query node's workload score
// https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
func (b *LookAsideBalancer) calculateScore(node int64, cost *internalpb.CostAggregation, executingNQ int64) int64 {
pow3 := func(n int64) int64 {
return n * n * n
}
if cost == nil || cost.GetResponseTime() == 0 {
return pow3(executingNQ)
}
executeSpeed := cost.ResponseTime - cost.ServiceTime
if executingNQ < 0 {
log.Warn("unexpected executing nq value",
zap.Int64("executingNQ", executingNQ))
return executeSpeed
}
if cost.GetTotalNQ() < 0 {
log.Warn("unexpected total nq value",
zap.Int64("totalNq", cost.GetTotalNQ()))
return executeSpeed
}
// workload := math.Pow(float64(1+cost.GetTotalNQ()+executingNQ), 3.0) * float64(cost.ServiceTime)
workload := pow3(1+cost.GetTotalNQ()+executingNQ) * cost.ServiceTime
if workload < 0 {
return math.MaxInt64
}
return executeSpeed + workload
}
func (b *LookAsideBalancer) checkQueryNodeHealthLoop(ctx context.Context) {
log := log.Ctx(ctx).WithRateGroup("proxy.LookAsideBalancer", 1, 60)
defer b.wg.Done()
checkHealthInterval := Params.ProxyCfg.CheckQueryNodeHealthInterval.GetAsDuration(time.Millisecond)
ticker := time.NewTicker(checkHealthInterval)
defer ticker.Stop()
log.Info("Start check query node health loop")
pool := conc.NewDefaultPool[any]()
for {
select {
case <-b.closeCh:
log.Info("check query node health loop exit")
return
case <-ticker.C:
var futures []*conc.Future[any]
now := time.Now()
b.knownNodeInfos.Range(func(node int64, info nodeInfo) bool {
futures = append(futures, pool.Submit(func() (any, error) {
metrics, ok := b.metricsMap.Get(node)
if !ok || now.UnixMilli()-metrics.ts.Load() > checkHealthInterval.Milliseconds() {
checkTimeout := Params.ProxyCfg.HealthCheckTimeout.GetAsDuration(time.Millisecond)
ctx, cancel := context.WithTimeout(context.Background(), checkTimeout)
defer cancel()
if node == -1 {
panic("let it panic")
}
qn, err := b.clientMgr.GetClient(ctx, info)
if err != nil {
// get client from clientMgr failed, which means this qn isn't a shard leader anymore, skip it's health check
b.trySetQueryNodeUnReachable(node, err)
log.RatedInfo(10, "get client failed", zap.Int64("node", node), zap.Error(err))
return struct{}{}, nil
}
resp, err := qn.GetComponentStates(ctx, &milvuspb.GetComponentStatesRequest{})
if err != nil {
b.trySetQueryNodeUnReachable(node, err)
log.RatedWarn(10, "get component status failed, set node unreachable", zap.Int64("node", node), zap.Error(err))
return struct{}{}, nil
}
if resp.GetState().GetStateCode() != commonpb.StateCode_Healthy {
b.trySetQueryNodeUnReachable(node, merr.ErrServiceUnavailable)
log.RatedWarn(10, "component status unhealthy, set node unreachable", zap.Int64("node", node), zap.Error(err))
return struct{}{}, nil
}
}
// check health successfully, try set query node reachable
b.trySetQueryNodeReachable(node)
return struct{}{}, nil
}))
return true
})
conc.AwaitAll(futures...)
}
}
}
func (b *LookAsideBalancer) trySetQueryNodeUnReachable(node int64, err error) {
failures, ok := b.failedHeartBeatCounter.Get(node)
if !ok {
failures = atomic.NewInt64(0)
}
failures.Inc()
b.failedHeartBeatCounter.Insert(node, failures)
log.Info("get component status failed",
zap.Int64("node", node),
zap.Int64("times", failures.Load()),
zap.Error(err))
if failures.Load() < Params.ProxyCfg.RetryTimesOnHealthCheck.GetAsInt64() {
return
}
// if the total time of consecutive heartbeat failures reach the session.ttl, remove the offline query node
limit := Params.CommonCfg.SessionTTL.GetAsDuration(time.Second).Seconds() /
Params.ProxyCfg.HealthCheckTimeout.GetAsDuration(time.Millisecond).Seconds()
if failures.Load() > Params.ProxyCfg.RetryTimesOnHealthCheck.GetAsInt64() && float64(failures.Load()) >= limit {
log.Info("the heartbeat failures has reach it's upper limit, remove the query node",
zap.Int64("nodeID", node))
// stop the heartbeat
b.metricsMap.Remove(node)
b.knownNodeInfos.Remove(node)
return
}
metrics, ok := b.metricsMap.Get(node)
if ok {
metrics.unavailable.Store(true)
}
}
func (b *LookAsideBalancer) trySetQueryNodeReachable(node int64) {
// once heartbeat succeed, clear failed counter
failures, ok := b.failedHeartBeatCounter.Get(node)
if ok {
failures.Store(0)
}
metrics, ok := b.metricsMap.Get(node)
if !ok || metrics.unavailable.CompareAndSwap(true, false) {
log.Info("component recuperated, set node reachable", zap.Int64("node", node))
}
}