milvus/client/column/sparse_test.go

104 lines
3.0 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package column
import (
"fmt"
"math/rand"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/milvus-io/milvus/client/v2/entity"
)
func TestColumnSparseEmbedding(t *testing.T) {
columnName := fmt.Sprintf("column_sparse_embedding_%d", rand.Int())
columnLen := 8 + rand.Intn(10)
v := make([]entity.SparseEmbedding, 0, columnLen)
for i := 0; i < columnLen; i++ {
length := 1 + rand.Intn(5)
positions := make([]uint32, length)
values := make([]float32, length)
for j := 0; j < length; j++ {
positions[j] = uint32(j)
values[j] = rand.Float32()
}
se, err := entity.NewSliceSparseEmbedding(positions, values)
require.NoError(t, err)
v = append(v, se)
}
column := NewColumnSparseVectors(columnName, v)
t.Run("test column attribute", func(t *testing.T) {
assert.Equal(t, columnName, column.Name())
assert.Equal(t, entity.FieldTypeSparseVector, column.Type())
assert.Equal(t, columnLen, column.Len())
assert.EqualValues(t, v, column.Data())
})
t.Run("test column field data", func(t *testing.T) {
fd := column.FieldData()
assert.NotNil(t, fd)
assert.Equal(t, fd.GetFieldName(), columnName)
result, err := FieldDataColumn(fd, 0, -1)
assert.NoError(t, err)
parsed, ok := result.(*ColumnSparseFloatVector)
if assert.True(t, ok) {
assert.Equal(t, columnName, parsed.Name())
assert.Equal(t, entity.FieldTypeSparseVector, parsed.Type())
assert.Equal(t, columnLen, parsed.Len())
// dim not equal
// assert.EqualValues(t, v, parsed.Data())
}
})
t.Run("test column value by idx", func(t *testing.T) {
_, err := column.Value(-1)
assert.Error(t, err)
_, err = column.Value(columnLen)
assert.Error(t, err)
_, err = column.Get(-1)
assert.Error(t, err)
_, err = column.Get(columnLen)
assert.Error(t, err)
for i := 0; i < columnLen; i++ {
v, err := column.Value(i)
assert.NoError(t, err)
assert.Equal(t, column.values[i], v)
getV, err := column.Get(i)
assert.NoError(t, err)
assert.Equal(t, v, getV)
}
})
t.Run("test_column_slice", func(t *testing.T) {
l := rand.Intn(columnLen)
sliced := column.Slice(0, l)
slicedColumn, ok := sliced.(*ColumnSparseFloatVector)
if assert.True(t, ok) {
assert.Equal(t, column.Data()[:l], slicedColumn.Data())
}
})
}