// Copyright (C) 2019-2020 Zilliz. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software distributed under the License // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express // or implied. See the License for the specific language governing permissions and limitations under the License #pragma once #include #include #include #include "common/Types.h" using milvus::index::ScalarIndex; namespace { bool compare_float(float x, float y, float epsilon = 0.000001f) { if (fabs(x - y) < epsilon) return true; return false; } bool compare_double(double x, double y, double epsilon = 0.000001f) { if (fabs(x - y) < epsilon) return true; return false; } bool Any(const milvus::FixedVector& vec) { for (auto& val : vec) { if (val == false) { return false; } } return true; } bool BitSetNone(const milvus::FixedVector& vec) { for (auto& val : vec) { if (val == true) { return false; } } return true; } uint64_t Count(const milvus::FixedVector& vec) { uint64_t count = 0; for (size_t i = 0; i < vec.size(); ++i) { if (vec[i] == true) count++; } return count; } inline void assert_order(const milvus::SearchResult& result, const knowhere::MetricType& metric_type) { bool dsc = milvus::PositivelyRelated(metric_type); auto& ids = result.seg_offsets_; auto& dist = result.distances_; auto nq = result.total_nq_; auto topk = result.unity_topK_; if (dsc) { for (int i = 0; i < nq; i++) { for (int j = 1; j < topk; j++) { auto idx = i * topk + j; if (ids[idx] != -1) { ASSERT_GE(dist[idx - 1], dist[idx]); } } } } else { for (int i = 0; i < nq; i++) { for (int j = 1; j < topk; j++) { auto idx = i * topk + j; if (ids[idx] != -1) { ASSERT_LE(dist[idx - 1], dist[idx]); } } } } } template inline void assert_in(ScalarIndex* index, const std::vector& arr) { // hard to compare floating point value. if (std::is_floating_point_v) { return; } auto bitset1 = index->In(arr.size(), arr.data()); ASSERT_EQ(arr.size(), bitset1.size()); ASSERT_TRUE(Any(bitset1)); auto test = std::make_unique(arr[arr.size() - 1] + 1); auto bitset2 = index->In(1, test.get()); ASSERT_EQ(arr.size(), bitset2.size()); ASSERT_TRUE(BitSetNone(bitset2)); } template inline void assert_not_in(ScalarIndex* index, const std::vector& arr) { auto bitset1 = index->NotIn(arr.size(), arr.data()); ASSERT_EQ(arr.size(), bitset1.size()); ASSERT_TRUE(BitSetNone(bitset1)); auto test = std::make_unique(arr[arr.size() - 1] + 1); auto bitset2 = index->NotIn(1, test.get()); ASSERT_EQ(arr.size(), bitset2.size()); ASSERT_TRUE(Any(bitset2)); } template inline void assert_range(ScalarIndex* index, const std::vector& arr) { auto test_min = arr[0]; auto test_max = arr[arr.size() - 1]; auto bitset1 = index->Range(test_min - 1, milvus::OpType::GreaterThan); ASSERT_EQ(arr.size(), bitset1.size()); ASSERT_TRUE(Any(bitset1)); auto bitset2 = index->Range(test_min, milvus::OpType::GreaterEqual); ASSERT_EQ(arr.size(), bitset2.size()); ASSERT_TRUE(Any(bitset2)); auto bitset3 = index->Range(test_max + 1, milvus::OpType::LessThan); ASSERT_EQ(arr.size(), bitset3.size()); ASSERT_TRUE(Any(bitset3)); auto bitset4 = index->Range(test_max, milvus::OpType::LessEqual); ASSERT_EQ(arr.size(), bitset4.size()); ASSERT_TRUE(Any(bitset4)); auto bitset5 = index->Range(test_min, true, test_max, true); ASSERT_EQ(arr.size(), bitset5.size()); ASSERT_TRUE(Any(bitset5)); } template inline void assert_reverse(ScalarIndex* index, const std::vector& arr) { for (size_t offset = 0; offset < arr.size(); ++offset) { ASSERT_EQ(index->Reverse_Lookup(offset), arr[offset]); } } template <> inline void assert_reverse(ScalarIndex* index, const std::vector& arr) { for (size_t offset = 0; offset < arr.size(); ++offset) { ASSERT_TRUE(compare_float(index->Reverse_Lookup(offset), arr[offset])); } } template <> inline void assert_reverse(ScalarIndex* index, const std::vector& arr) { for (size_t offset = 0; offset < arr.size(); ++offset) { ASSERT_TRUE(compare_double(index->Reverse_Lookup(offset), arr[offset])); } } template <> inline void assert_reverse(ScalarIndex* index, const std::vector& arr) { for (size_t offset = 0; offset < arr.size(); ++offset) { ASSERT_TRUE(arr[offset].compare(index->Reverse_Lookup(offset)) == 0); } } template <> inline void assert_in(ScalarIndex* index, const std::vector& arr) { auto bitset1 = index->In(arr.size(), arr.data()); ASSERT_EQ(arr.size(), bitset1.size()); ASSERT_TRUE(Any(bitset1)); } template <> inline void assert_not_in(ScalarIndex* index, const std::vector& arr) { auto bitset1 = index->NotIn(arr.size(), arr.data()); ASSERT_EQ(arr.size(), bitset1.size()); ASSERT_TRUE(BitSetNone(bitset1)); } template <> inline void assert_range(ScalarIndex* index, const std::vector& arr) { auto test_min = arr[0]; auto test_max = arr[arr.size() - 1]; auto bitset2 = index->Range(test_min, milvus::OpType::GreaterEqual); ASSERT_EQ(arr.size(), bitset2.size()); ASSERT_TRUE(Any(bitset2)); auto bitset4 = index->Range(test_max, milvus::OpType::LessEqual); ASSERT_EQ(arr.size(), bitset4.size()); ASSERT_TRUE(Any(bitset4)); auto bitset5 = index->Range(test_min, true, test_max, true); ASSERT_EQ(arr.size(), bitset5.size()); ASSERT_TRUE(Any(bitset5)); } } // namespace