import pytest import unittest from enum import Enum import random import time import threading import os import uuid import json import pandas as pd from datetime import datetime from prettytable import PrettyTable import functools from collections import Counter from time import sleep from pymilvus import AnnSearchRequest, RRFRanker from pymilvus.bulk_writer import RemoteBulkWriter, BulkFileType from base.database_wrapper import ApiDatabaseWrapper from base.collection_wrapper import ApiCollectionWrapper from base.partition_wrapper import ApiPartitionWrapper from base.utility_wrapper import ApiUtilityWrapper from common import common_func as cf from common import common_type as ct from common.milvus_sys import MilvusSys from chaos import constants from common.common_type import CheckTasks from utils.util_log import test_log as log from utils.api_request import Error event_lock = threading.Lock() request_lock = threading.Lock() def get_chaos_info(): try: with open(constants.CHAOS_INFO_SAVE_PATH, 'r') as f: chaos_info = json.load(f) except Exception as e: log.warn(f"get_chaos_info error: {e}") return None return chaos_info class Singleton(type): instances = {} def __call__(cls, *args, **kwargs): if cls not in cls.instances: cls.instances[cls] = super().__call__(*args, **kwargs) return cls.instances[cls] class EventRecords(metaclass=Singleton): def __init__(self): self.file_name = f"/tmp/ci_logs/event_records_{uuid.uuid4()}.parquet" self.created_file = False def insert(self, event_name, event_status, ts=None): log.info(f"insert event: {event_name}, {event_status}") insert_ts = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') if ts is None else ts data = { "event_name": [event_name], "event_status": [event_status], "event_ts": [insert_ts] } df = pd.DataFrame(data) if not self.created_file: with event_lock: df.to_parquet(self.file_name, engine='fastparquet') self.created_file = True else: with event_lock: df.to_parquet(self.file_name, engine='fastparquet', append=True) def get_records_df(self): df = pd.read_parquet(self.file_name) return df class RequestRecords(metaclass=Singleton): def __init__(self): self.file_name = f"/tmp/ci_logs/request_records_{uuid.uuid4()}.parquet" self.buffer = [] self.created_file = False def insert(self, operation_name, collection_name, start_time, time_cost, result): data = { "operation_name": operation_name, "collection_name": collection_name, "start_time": start_time, "time_cost": time_cost, "result": result } self.buffer.append(data) if len(self.buffer) > 100: df = pd.DataFrame(self.buffer) if not self.created_file: with request_lock: df.to_parquet(self.file_name, engine='fastparquet') self.created_file = True else: with request_lock: df.to_parquet(self.file_name, engine='fastparquet', append=True) self.buffer = [] def sink(self): if len(self.buffer) == 0: return try: df = pd.DataFrame(self.buffer) except Exception as e: log.error(f"convert buffer {self.buffer} to dataframe error: {e}") return if not self.created_file: with request_lock: df.to_parquet(self.file_name, engine='fastparquet') self.created_file = True else: with request_lock: df.to_parquet(self.file_name, engine='fastparquet', append=True) def get_records_df(self): self.sink() df = pd.read_parquet(self.file_name) return df class ResultAnalyzer: def __init__(self): rr = RequestRecords() df = rr.get_records_df() df["start_time"] = pd.to_datetime(df["start_time"]) df = df.sort_values(by='start_time') self.df = df self.chaos_info = get_chaos_info() self.chaos_start_time = self.chaos_info['create_time'] if self.chaos_info is not None else None self.chaos_end_time = self.chaos_info['delete_time'] if self.chaos_info is not None else None self.recovery_time = self.chaos_info['recovery_time'] if self.chaos_info is not None else None def get_stage_success_rate(self): df = self.df window = pd.offsets.Milli(1000) result = df.groupby([pd.Grouper(key='start_time', freq=window), 'operation_name']).apply(lambda x: pd.Series({ 'success_count': x[x['result'] == 'True'].shape[0], 'failed_count': x[x['result'] == 'False'].shape[0] })) data = result.reset_index() data['success_rate'] = data['success_count'] / (data['success_count'] + data['failed_count']).replace(0, 1) grouped_data = data.groupby('operation_name') if self.chaos_info is None: chaos_start_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') chaos_end_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') recovery_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') else: chaos_start_time = self.chaos_info['create_time'] chaos_end_time = self.chaos_info['delete_time'] recovery_time = self.chaos_info['recovery_time'] stage_success_rate = {} for name, group in grouped_data: log.info(f"operation_name: {name}") # spilt data to 3 parts by chaos start time and chaos end time and aggregate the success rate data_before_chaos = group[group['start_time'] < chaos_start_time].agg( {'success_rate': 'mean', 'failed_count': 'sum', 'success_count': 'sum'}) data_during_chaos = group[ (group['start_time'] >= chaos_start_time) & (group['start_time'] <= chaos_end_time)].agg( {'success_rate': 'mean', 'failed_count': 'sum', 'success_count': 'sum'}) data_after_chaos = group[group['start_time'] > recovery_time].agg( {'success_rate': 'mean', 'failed_count': 'sum', 'success_count': 'sum'}) stage_success_rate[name] = { 'before_chaos': f"{data_before_chaos['success_rate']}({data_before_chaos['success_count']}/{data_before_chaos['success_count'] + data_before_chaos['failed_count']})" if not data_before_chaos.empty else "no data", 'during_chaos': f"{data_during_chaos['success_rate']}({data_during_chaos['success_count']}/{data_during_chaos['success_count'] + data_during_chaos['failed_count']})" if not data_during_chaos.empty else "no data", 'after_chaos': f"{data_after_chaos['success_rate']}({data_after_chaos['success_count']}/{data_after_chaos['success_count'] + data_after_chaos['failed_count']})" if not data_after_chaos.empty else "no data", } log.info(f"stage_success_rate: {stage_success_rate}") return stage_success_rate def get_realtime_success_rate(self, interval=10): df = self.df window = pd.offsets.Second(interval) result = df.groupby([pd.Grouper(key='start_time', freq=window), 'operation_name']).apply(lambda x: pd.Series({ 'success_count': x[x['result'] == 'True'].shape[0], 'failed_count': x[x['result'] == 'False'].shape[0] })) data = result.reset_index() data['success_rate'] = data['success_count'] / (data['success_count'] + data['failed_count']).replace(0, 1) grouped_data = data.groupby('operation_name') return grouped_data def show_result_table(self): table = PrettyTable() table.field_names = ['operation_name', 'before_chaos', f'during_chaos: {self.chaos_start_time}~{self.recovery_time}', 'after_chaos'] data = self.get_stage_success_rate() for operation, values in data.items(): row = [operation, values['before_chaos'], values['during_chaos'], values['after_chaos']] table.add_row(row) log.info(f"succ rate for operations in different stage\n{table}") class Op(Enum): create = 'create' # short name for create collection create_db = 'create_db' create_collection = 'create_collection' create_partition = 'create_partition' insert = 'insert' insert_freshness = 'insert_freshness' upsert = 'upsert' upsert_freshness = 'upsert_freshness' flush = 'flush' index = 'index' create_index = 'create_index' drop_index = 'drop_index' load = 'load' load_collection = 'load_collection' load_partition = 'load_partition' release = 'release' release_collection = 'release_collection' release_partition = 'release_partition' search = 'search' full_text_search = 'full_text_search' hybrid_search = 'hybrid_search' query = 'query' text_match = 'text_match' phrase_match = 'phrase_match' delete = 'delete' delete_freshness = 'delete_freshness' compact = 'compact' drop = 'drop' # short name for drop collection drop_db = 'drop_db' drop_collection = 'drop_collection' drop_partition = 'drop_partition' load_balance = 'load_balance' bulk_insert = 'bulk_insert' unknown = 'unknown' timeout = 120 search_timeout = 10 query_timeout = 10 enable_traceback = False DEFAULT_FMT = '[start time:{start_time}][time cost:{elapsed:0.8f}s][operation_name:{operation_name}][collection name:{collection_name}] -> {result!r}' request_records = RequestRecords() def trace(fmt=DEFAULT_FMT, prefix='test', flag=True): def decorate(func): @functools.wraps(func) def inner_wrapper(self, *args, **kwargs): start_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') start_time_ts = time.time() t0 = time.perf_counter() res, result = func(self, *args, **kwargs) elapsed = time.perf_counter() - t0 end_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') operation_name = func.__name__ if flag: collection_name = self.c_wrap.name log_str = f"[{prefix}]" + fmt.format(**locals()) # TODO: add report function in this place, like uploading to influxdb try: t0 = time.perf_counter() request_records.insert(operation_name, collection_name, start_time, elapsed, str(result)) tt = time.perf_counter() - t0 log.debug(f"insert request record cost {tt}s") except Exception as e: log.error(e) log.debug(log_str) if result: self.rsp_times.append(elapsed) self.average_time = ( elapsed + self.average_time * self._succ) / (self._succ + 1) self._succ += 1 # add first success record if there is no success record before if len(self.fail_records) > 0 and self.fail_records[-1][0] == "failure" and \ self._succ + self._fail == self.fail_records[-1][1] + 1: self.fail_records.append(("success", self._succ + self._fail, start_time, start_time_ts)) else: self._fail += 1 self.fail_records.append(("failure", self._succ + self._fail, start_time, start_time_ts)) return res, result return inner_wrapper return decorate def exception_handler(): def wrapper(func): @functools.wraps(func) def inner_wrapper(self, *args, **kwargs): class_name = None function_name = None try: function_name = func.__name__ class_name = getattr(self, '__class__', None).__name__ if self else None res, result = func(self, *args, **kwargs) return res, result except Exception as e: log_row_length = 300 e_str = str(e) log_e = e_str[0:log_row_length] + '......' if len(e_str) > log_row_length else e_str if class_name: log_message = f"Error in {class_name}.{function_name}: {log_e}" else: log_message = f"Error in {function_name}: {log_e}" log.error(log_message) log.error(log_e) return Error(e), False return inner_wrapper return wrapper class Checker: """ A base class of milvus operation checker to a. check whether milvus is servicing b. count operations and success rate """ def __init__(self, collection_name=None, partition_name=None, shards_num=2, dim=ct.default_dim, insert_data=True, schema=None, replica_number=1, **kwargs): self.recovery_time = 0 self._succ = 0 self._fail = 0 self.fail_records = [] self._keep_running = True self.rsp_times = [] self.average_time = 0 self.scale = 1 * 10 ** 6 self.files = [] self.word_freq = Counter() self.ms = MilvusSys() self.bucket_name = self.ms.index_nodes[0]["infos"]["system_configurations"]["minio_bucket_name"] self.db_wrap = ApiDatabaseWrapper() self.c_wrap = ApiCollectionWrapper() self.p_wrap = ApiPartitionWrapper() self.utility_wrap = ApiUtilityWrapper() c_name = collection_name if collection_name is not None else cf.gen_unique_str( 'Checker_') self.c_name = c_name p_name = partition_name if partition_name is not None else "_default" self.p_name = p_name self.p_names = [self.p_name] if partition_name is not None else None schema = cf.gen_all_datatype_collection_schema(dim=dim) if schema is None else schema self.schema = schema self.dim = cf.get_dim_by_schema(schema=schema) self.int64_field_name = cf.get_int64_field_name(schema=schema) self.text_field_name = cf.get_text_field_name(schema=schema) self.text_match_field_name_list = cf.get_text_match_field_name(schema=schema) self.float_vector_field_name = cf.get_float_vec_field_name(schema=schema) self.c_wrap.init_collection(name=c_name, schema=schema, shards_num=shards_num, timeout=timeout, enable_traceback=enable_traceback) self.scalar_field_names = cf.get_scalar_field_name_list(schema=schema) self.float_vector_field_names = cf.get_float_vec_field_name_list(schema=schema) self.binary_vector_field_names = cf.get_binary_vec_field_name_list(schema=schema) self.bm25_sparse_field_names = cf.get_bm25_vec_field_name_list(schema=schema) # get index of collection indexes = [index.to_dict() for index in self.c_wrap.indexes] indexed_fields = [index['field'] for index in indexes] # create index for scalar fields for f in self.scalar_field_names: if f in indexed_fields: continue self.c_wrap.create_index(f, {"index_type": "INVERTED"}, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) # create index for float vector fields for f in self.float_vector_field_names: if f in indexed_fields: continue self.c_wrap.create_index(f, constants.DEFAULT_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) # create index for binary vector fields for f in self.binary_vector_field_names: if f in indexed_fields: continue self.c_wrap.create_index(f, constants.DEFAULT_BINARY_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) for f in self.bm25_sparse_field_names: if f in indexed_fields: continue self.c_wrap.create_index(f, constants.DEFAULT_BM25_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.replica_number = replica_number self.c_wrap.load(replica_number=self.replica_number) self.p_wrap.init_partition(self.c_name, self.p_name) if insert_data and self.c_wrap.num_entities == 0: log.info(f"collection {c_name} created, start to insert data") t0 = time.perf_counter() self.insert_data(nb=constants.ENTITIES_FOR_SEARCH, partition_name=self.p_name) log.info(f"insert data for collection {c_name} cost {time.perf_counter() - t0}s") self.initial_entities = self.c_wrap.collection.num_entities self.scale = 100000 # timestamp scale to make time.time() as int64 def insert_data(self, nb=constants.DELTA_PER_INS, partition_name=None): partition_name = self.p_name if partition_name is None else partition_name data = cf.gen_row_data_by_schema(nb=nb, schema=self.schema) ts_data = [] for i in range(nb): time.sleep(0.001) offset_ts = int(time.time() * self.scale) ts_data.append(offset_ts) for i in range(nb): data[i][self.int64_field_name] = ts_data[i] df = pd.DataFrame(data) for text_field in self.text_match_field_name_list: if text_field in df.columns: texts = df[text_field].tolist() wf = cf.analyze_documents(texts) self.word_freq.update(wf) res, result = self.c_wrap.insert(data=data, partition_name=partition_name, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result def total(self): return self._succ + self._fail def succ_rate(self): return self._succ / self.total() if self.total() != 0 else 0 def check_result(self): succ_rate = self.succ_rate() total = self.total() rsp_times = self.rsp_times average_time = 0 if len(rsp_times) == 0 else sum( rsp_times) / len(rsp_times) max_time = 0 if len(rsp_times) == 0 else max(rsp_times) min_time = 0 if len(rsp_times) == 0 else min(rsp_times) checker_name = self.__class__.__name__ checkers_result = f"{checker_name}, succ_rate: {succ_rate:.2f}, total: {total:03d}, average_time: {average_time:.4f}, max_time: {max_time:.4f}, min_time: {min_time:.4f}" log.info(checkers_result) log.debug(f"{checker_name} rsp times: {self.rsp_times}") if len(self.fail_records) > 0: log.info(f"{checker_name} failed at {self.fail_records}") return checkers_result def terminate(self): self._keep_running = False self.reset() def pause(self): self._keep_running = False time.sleep(10) def resume(self): self._keep_running = True time.sleep(10) def reset(self): self._succ = 0 self._fail = 0 self.rsp_times = [] self.fail_records = [] self.average_time = 0 def get_rto(self): if len(self.fail_records) == 0: return 0 end = self.fail_records[-1][3] start = self.fail_records[0][3] recovery_time = end - start # second self.recovery_time = recovery_time checker_name = self.__class__.__name__ log.info(f"{checker_name} recovery time is {self.recovery_time}, start at {self.fail_records[0][2]}, " f"end at {self.fail_records[-1][2]}") return recovery_time def prepare_bulk_insert_data(self, nb=constants.ENTITIES_FOR_BULKINSERT, file_type="npy", minio_endpoint="127.0.0.1:9000", bucket_name=None): schema = self.schema bucket_name = self.bucket_name if bucket_name is None else bucket_name log.info(f"prepare data for bulk insert") try: files = cf.prepare_bulk_insert_data(schema=schema, nb=nb, file_type=file_type, minio_endpoint=minio_endpoint, bucket_name=bucket_name) self.files = files return files, True except Exception as e: log.error(f"prepare data for bulk insert failed with error {e}") return [], False def do_bulk_insert(self): log.info(f"bulk insert collection name: {self.c_name}") task_ids, result = self.utility_wrap.do_bulk_insert(collection_name=self.c_name, files=self.files) log.info(f"task ids {task_ids}") completed, result = self.utility_wrap.wait_for_bulk_insert_tasks_completed(task_ids=[task_ids], timeout=720) return task_ids, completed class CollectionLoadChecker(Checker): """check collection load operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): self.replica_number = replica_number if collection_name is None: collection_name = cf.gen_unique_str("CollectionLoadChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) @trace() def load_collection(self): res, result = self.c_wrap.load(replica_number=self.replica_number) return res, result @exception_handler() def run_task(self): res, result = self.load_collection() if result: self.c_wrap.release() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class CollectionReleaseChecker(Checker): """check collection release operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): self.replica_number = replica_number if collection_name is None: collection_name = cf.gen_unique_str("CollectionReleaseChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self.c_wrap.load(replica_number=self.replica_number) @trace() def release_collection(self): res, result = self.c_wrap.release() return res, result @exception_handler() def run_task(self): res, result = self.release_collection() if result: self.c_wrap.release() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class PartitionLoadChecker(Checker): """check partition load operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): self.replica_number = replica_number if collection_name is None: collection_name = cf.gen_unique_str("PartitionLoadChecker_") p_name = cf.gen_unique_str("PartitionLoadChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema, partition_name=p_name) self.c_wrap.release() @trace() def load_partition(self): res, result = self.p_wrap.load(replica_number=self.replica_number) return res, result @exception_handler() def run_task(self): res, result = self.load_partition() if result: self.p_wrap.release() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class PartitionReleaseChecker(Checker): """check partition release operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): self.replica_number = replica_number if collection_name is None: collection_name = cf.gen_unique_str("PartitionReleaseChecker_") p_name = cf.gen_unique_str("PartitionReleaseChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema, partition_name=p_name) self.c_wrap.release() self.p_wrap.load(replica_number=self.replica_number) @trace() def release_partition(self): res, result = self.p_wrap.release() return res, result @exception_handler() def run_task(self): res, result = self.release_partition() if result: self.p_wrap.load(replica_number=self.replica_number) return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class SearchChecker(Checker): """check search operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): if collection_name is None: collection_name = cf.gen_unique_str("SearchChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self.insert_data() @trace() def search(self): res, result = self.c_wrap.search( data=cf.gen_vectors(5, self.dim), anns_field=self.float_vector_field_name, param=constants.DEFAULT_SEARCH_PARAM, limit=1, partition_names=self.p_names, timeout=search_timeout, check_task=CheckTasks.check_nothing ) return res, result @exception_handler() def run_task(self): res, result = self.search() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class FullTextSearchChecker(Checker): """check full text search operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): if collection_name is None: collection_name = cf.gen_unique_str("FullTextSearchChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self.insert_data() @trace() def full_text_search(self): bm25_anns_field = random.choice(self.bm25_sparse_field_names) res, result = self.c_wrap.search( data=cf.gen_vectors(5, self.dim, vector_data_type="TEXT_SPARSE_VECTOR"), anns_field=bm25_anns_field, param=constants.DEFAULT_BM25_SEARCH_PARAM, limit=1, partition_names=self.p_names, timeout=search_timeout, check_task=CheckTasks.check_nothing ) return res, result @exception_handler() def run_task(self): res, result = self.full_text_search() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class HybridSearchChecker(Checker): """check hybrid search operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ): if collection_name is None: collection_name = cf.gen_unique_str("HybridSearchChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) # do load before search self.c_wrap.load(replica_number=replica_number) self.insert_data() def gen_hybrid_search_request(self): res = [] dim = self.dim for vec_field_name in self.float_vector_field_names: search_param = { "data": cf.gen_vectors(1, dim), "anns_field": vec_field_name, "param": constants.DEFAULT_SEARCH_PARAM, "limit": 10, "expr": f"{self.int64_field_name} > 0", } req = AnnSearchRequest(**search_param) res.append(req) return res @trace() def hybrid_search(self): res, result = self.c_wrap.hybrid_search( reqs=self.gen_hybrid_search_request(), rerank=RRFRanker(), limit=10, partition_names=self.p_names, timeout=search_timeout, check_task=CheckTasks.check_nothing ) return res, result @exception_handler() def run_task(self): res, result = self.hybrid_search() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class InsertFlushChecker(Checker): """check Insert and flush operations in a dependent thread""" def __init__(self, collection_name=None, flush=False, shards_num=2, schema=None): super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self._flush = flush self.initial_entities = self.c_wrap.collection.num_entities def keep_running(self): while True: t0 = time.time() _, insert_result = \ self.c_wrap.insert( data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) t1 = time.time() if not self._flush: if insert_result: self.rsp_times.append(t1 - t0) self.average_time = ((t1 - t0) + self.average_time * self._succ) / (self._succ + 1) self._succ += 1 log.debug(f"insert success, time: {t1 - t0:.4f}, average_time: {self.average_time:.4f}") else: self._fail += 1 sleep(constants.WAIT_PER_OP / 10) else: # call flush in property num_entities t0 = time.time() num_entities = self.c_wrap.num_entities t1 = time.time() if num_entities == (self.initial_entities + constants.DELTA_PER_INS): self.rsp_times.append(t1 - t0) self.average_time = ((t1 - t0) + self.average_time * self._succ) / (self._succ + 1) self._succ += 1 log.debug(f"flush success, time: {t1 - t0:.4f}, average_time: {self.average_time:.4f}") self.initial_entities += constants.DELTA_PER_INS else: self._fail += 1 sleep(constants.WAIT_PER_OP * 6) class FlushChecker(Checker): """check flush operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("FlushChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self.initial_entities = self.c_wrap.collection.num_entities @trace() def flush(self): res, result = self.c_wrap.flush() return res, result @exception_handler() def run_task(self): _, result = self.c_wrap.insert( data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) res, result = self.flush() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP * 6) class InsertChecker(Checker): """check insert operations in a dependent thread""" def __init__(self, collection_name=None, flush=False, shards_num=2, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("InsertChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self._flush = flush self.initial_entities = self.c_wrap.collection.num_entities self.inserted_data = [] self.scale = 1 * 10 ** 6 self.start_time_stamp = int(time.time() * self.scale) # us self.term_expr = f'{self.int64_field_name} >= {self.start_time_stamp}' self.file_name = f"/tmp/ci_logs/insert_data_{uuid.uuid4()}.parquet" @trace() def insert_entities(self): data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=self.schema) rows = len(data) ts_data = [] for i in range(constants.DELTA_PER_INS): time.sleep(0.001) offset_ts = int(time.time() * self.scale) ts_data.append(offset_ts) for i in range(rows): data[i][self.int64_field_name] = ts_data[i] log.debug(f"insert data: {rows}") res, result = self.c_wrap.insert(data=data, partition_names=self.p_names, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result @exception_handler() def run_task(self): res, result = self.insert_entities() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) def verify_data_completeness(self): # deprecated try: self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) except Exception as e: log.error(f"create index error: {e}") self.c_wrap.load() end_time_stamp = int(time.time() * self.scale) self.term_expr = f'{self.int64_field_name} >= {self.start_time_stamp} and ' \ f'{self.int64_field_name} <= {end_time_stamp}' data_in_client = [] for d in self.inserted_data: if self.start_time_stamp <= d <= end_time_stamp: data_in_client.append(d) res, result = self.c_wrap.query(self.term_expr, timeout=timeout, output_fields=[f'{self.int64_field_name}'], limit=len(data_in_client) * 2, check_task=CheckTasks.check_nothing) data_in_server = [] for r in res: d = r[f"{ct.default_int64_field_name}"] data_in_server.append(d) pytest.assume(set(data_in_server) == set(data_in_client)) class InsertFreshnessChecker(Checker): """check insert freshness operations in a dependent thread""" def __init__(self, collection_name=None, flush=False, shards_num=2, schema=None): self.latest_data = None if collection_name is None: collection_name = cf.gen_unique_str("InsertChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self._flush = flush self.initial_entities = self.c_wrap.collection.num_entities self.inserted_data = [] self.scale = 1 * 10 ** 6 self.start_time_stamp = int(time.time() * self.scale) # us self.term_expr = f'{self.int64_field_name} >= {self.start_time_stamp}' self.file_name = f"/tmp/ci_logs/insert_data_{uuid.uuid4()}.parquet" def insert_entities(self): data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=self.schema) ts_data = [] for i in range(constants.DELTA_PER_INS): time.sleep(0.001) offset_ts = int(time.time() * self.scale) ts_data.append(offset_ts) data[0] = ts_data # set timestamp (ms) as int64 log.debug(f"insert data: {len(ts_data)}") res, result = self.c_wrap.insert(data=data, partition_names=self.p_names, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.latest_data = ts_data[-1] self.term_expr = f'{self.int64_field_name} == {self.latest_data}' return res, result @trace() def insert_freshness(self): while True: res, result = self.c_wrap.query(self.term_expr, timeout=timeout, output_fields=[f'{self.int64_field_name}'], check_task=CheckTasks.check_nothing) if len(res) == 1 and res[0][f"{self.int64_field_name}"] == self.latest_data: break return res, result @exception_handler() def run_task(self): res, result = self.insert_entities() res, result = self.insert_freshness() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class UpsertChecker(Checker): """check upsert operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("UpsertChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=self.schema) @trace() def upsert_entities(self): res, result = self.c_wrap.upsert(data=self.data, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result @exception_handler() def run_task(self): # half of the data is upsert, the other half is insert rows = len(self.data) pk_old = [d[self.int64_field_name] for d in self.data[:rows // 2]] self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=self.schema) pk_new = [d[self.int64_field_name] for d in self.data[rows // 2:]] pk_update = pk_old + pk_new for i in range(rows): self.data[i][self.int64_field_name] = pk_update[i] res, result = self.upsert_entities() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP * 6) class UpsertFreshnessChecker(Checker): """check upsert freshness operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, schema=None): self.term_expr = None self.latest_data = None if collection_name is None: collection_name = cf.gen_unique_str("UpsertChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=self.schema) def upsert_entities(self): res, result = self.c_wrap.upsert(data=self.data, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result @trace() def upsert_freshness(self): while True: res, result = self.c_wrap.query(self.term_expr, timeout=timeout, output_fields=[f'{self.int64_field_name}'], check_task=CheckTasks.check_nothing) if len(res) == 1 and res[0][f"{self.int64_field_name}"] == self.latest_data: break return res, result @exception_handler() def run_task(self): # half of the data is upsert, the other half is insert rows = len(self.data[0]) pk_old = self.data[0][:rows // 2] self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=self.schema) pk_new = self.data[0][rows // 2:] pk_update = pk_old + pk_new self.data[0] = pk_update self.latest_data = self.data[0][-1] self.term_expr = f'{self.int64_field_name} == {self.latest_data}' res, result = self.upsert_entities() res, result = self.upsert_freshness() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP * 6) class CollectionCreateChecker(Checker): """check collection create operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("CreateChecker_") super().__init__(collection_name=collection_name, schema=schema) @trace() def init_collection(self): res, result = self.c_wrap.init_collection( name=cf.gen_unique_str("CreateChecker_"), schema=cf.gen_default_collection_schema(), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result @exception_handler() def run_task(self): res, result = self.init_collection() # if result: # # 50% chance to drop collection # if random.randint(0, 1) == 0: # self.c_wrap.drop(timeout=timeout) return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class CollectionDropChecker(Checker): """check collection drop operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("DropChecker_") super().__init__(collection_name=collection_name, schema=schema) self.collection_pool = [] self.gen_collection_pool(schema=self.schema) def gen_collection_pool(self, pool_size=50, schema=None): for i in range(pool_size): collection_name = cf.gen_unique_str("DropChecker_") res, result = self.c_wrap.init_collection(name=collection_name, schema=schema) if result: self.collection_pool.append(collection_name) @trace() def drop_collection(self): res, result = self.c_wrap.drop() if result: self.collection_pool.remove(self.c_wrap.name) return res, result @exception_handler() def run_task(self): res, result = self.drop_collection() return res, result def keep_running(self): while self._keep_running: res, result = self.run_task() if result: try: if len(self.collection_pool) <= 10: self.gen_collection_pool(schema=self.schema) except Exception as e: log.error(f"Failed to generate collection pool: {e}") try: c_name = self.collection_pool[0] self.c_wrap.init_collection(name=c_name) except Exception as e: log.error(f"Failed to init new collection: {e}") sleep(constants.WAIT_PER_OP) class PartitionCreateChecker(Checker): """check partition create operations in a dependent thread""" def __init__(self, collection_name=None, schema=None, partition_name=None): if collection_name is None: collection_name = cf.gen_unique_str("PartitionCreateChecker_") super().__init__(collection_name=collection_name, schema=schema, partition_name=partition_name) c_name = cf.gen_unique_str("PartitionDropChecker_") self.c_wrap.init_collection(name=c_name, schema=self.schema) self.c_name = c_name log.info(f"collection {c_name} created") self.p_wrap.init_partition(collection=self.c_name, name=cf.gen_unique_str("PartitionDropChecker_"), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing ) log.info(f"partition: {self.p_wrap}") @trace() def create_partition(self): res, result = self.p_wrap.init_partition(collection=self.c_name, name=cf.gen_unique_str("PartitionCreateChecker_"), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing ) return res, result @exception_handler() def run_task(self): res, result = self.create_partition() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class PartitionDropChecker(Checker): """check partition drop operations in a dependent thread""" def __init__(self, collection_name=None, schema=None, partition_name=None): if collection_name is None: collection_name = cf.gen_unique_str("PartitionDropChecker_") super().__init__(collection_name=collection_name, schema=schema, partition_name=partition_name) c_name = cf.gen_unique_str("PartitionDropChecker_") self.c_wrap.init_collection(name=c_name, schema=self.schema) self.c_name = c_name log.info(f"collection {c_name} created") self.p_wrap.init_partition(collection=self.c_name, name=cf.gen_unique_str("PartitionDropChecker_"), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing ) log.info(f"partition: {self.p_wrap}") @trace() def drop_partition(self): res, result = self.p_wrap.drop() return res, result @exception_handler() def run_task(self): res, result = self.drop_partition() if result: # create two partition then drop one for i in range(2): self.p_wrap.init_partition(collection=self.c_name, name=cf.gen_unique_str("PartitionDropChecker_"), timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing ) return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class DatabaseCreateChecker(Checker): """check create database operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("DatabaseChecker_") super().__init__(collection_name=collection_name, schema=schema) self.db_name = None @trace() def init_db(self): db_name = cf.gen_unique_str("db_") res, result = self.db_wrap.create_database(db_name) self.db_name = db_name return res, result @exception_handler() def run_task(self): res, result = self.init_db() if result: self.db_wrap.drop_database(self.db_name) return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class DatabaseDropChecker(Checker): """check drop database operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("DatabaseChecker_") super().__init__(collection_name=collection_name, schema=schema) self.db_name = cf.gen_unique_str("db_") self.db_wrap.create_database(self.db_name) @trace() def drop_db(self): res, result = self.db_wrap.drop_database(self.db_name) return res, result @exception_handler() def run_task(self): res, result = self.drop_db() if result: self.db_name = cf.gen_unique_str("db_") self.db_wrap.create_database(self.db_name) return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class IndexCreateChecker(Checker): """check index create operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("IndexChecker_") super().__init__(collection_name=collection_name, schema=schema) for i in range(5): self.c_wrap.insert(data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema), timeout=timeout, enable_traceback=enable_traceback) # do as a flush before indexing log.debug(f"Index ready entities: {self.c_wrap.num_entities}") @trace() def create_index(self): res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result @exception_handler() def run_task(self): c_name = cf.gen_unique_str("IndexCreateChecker_") self.c_wrap.init_collection(name=c_name, schema=self.schema) res, result = self.create_index() if result: self.c_wrap.drop_index(timeout=timeout) return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP * 6) class IndexDropChecker(Checker): """check index drop operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("IndexChecker_") super().__init__(collection_name=collection_name, schema=schema) for i in range(5): self.c_wrap.insert(data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema), timeout=timeout, enable_traceback=enable_traceback) # do as a flush before indexing log.debug(f"Index ready entities: {self.c_wrap.num_entities}") @trace() def drop_index(self): res, result = self.c_wrap.drop_index(timeout=timeout) return res, result @exception_handler() def run_task(self): res, result = self.drop_index() if result: self.c_wrap.init_collection(name=cf.gen_unique_str("IndexDropChecker_"), schema=self.schema) self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) return res, result def keep_running(self): while self._keep_running: self.c_wrap.init_collection(name=cf.gen_unique_str("IndexDropChecker_"), schema=self.schema) self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.run_task() sleep(constants.WAIT_PER_OP * 6) class QueryChecker(Checker): """check query operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("QueryChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load(replica_number=replica_number) # do load before query self.insert_data() self.term_expr = f"{self.int64_field_name} > 0" @trace() def query(self): res, result = self.c_wrap.query(self.term_expr, timeout=query_timeout, check_task=CheckTasks.check_query_not_empty) return res, result @exception_handler() def run_task(self): res, result = self.query() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class TextMatchChecker(Checker): """check text match query operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("QueryChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load(replica_number=replica_number) # do load before query self.insert_data() key_word = self.word_freq.most_common(1)[0][0] text_match_field_name = random.choice(self.text_match_field_name_list) self.term_expr = f"TEXT_MATCH({text_match_field_name}, '{key_word}')" @trace() def text_match(self): res, result = self.c_wrap.query(self.term_expr, timeout=query_timeout, check_task=CheckTasks.check_query_not_empty) return res, result @exception_handler() def run_task(self): key_word = self.word_freq.most_common(1)[0][0] text_match_field_name = random.choice(self.text_match_field_name_list) self.term_expr = f"TEXT_MATCH({text_match_field_name}, '{key_word}')" res, result = self.text_match() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class PhraseMatchChecker(Checker): """check phrase match query operations in a dependent thread""" def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("PhraseMatchChecker_") super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema) res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load(replica_number=replica_number) # do load before query self.insert_data() key_word_1 = self.word_freq.most_common(2)[0][0] key_word_2 = self.word_freq.most_common(2)[1][0] slop=5 text_match_field_name = random.choice(self.text_match_field_name_list) self.term_expr = f"PHRASE_MATCH({text_match_field_name}, '{key_word_1} {key_word_2}', {slop})" @trace() def phrase_match(self): res, result = self.c_wrap.query(self.term_expr, timeout=query_timeout, check_task=CheckTasks.check_query_not_empty) return res, result @exception_handler() def run_task(self): key_word_1 = self.word_freq.most_common(2)[0][0] key_word_2 = self.word_freq.most_common(2)[1][0] slop=5 text_match_field_name = random.choice(self.text_match_field_name_list) self.term_expr = f"PHRASE_MATCH({text_match_field_name}, '{key_word_1} {key_word_2}', {slop})" res, result = self.phrase_match() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class DeleteChecker(Checker): """check delete operations in a dependent thread""" def __init__(self, collection_name=None, schema=None, shards_num=2): if collection_name is None: collection_name = cf.gen_unique_str("DeleteChecker_") super().__init__(collection_name=collection_name, schema=schema, shards_num=shards_num) res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load() # load before query self.insert_data() query_expr = f'{self.int64_field_name} > 0' res, _ = self.c_wrap.query(query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name) self.ids = [r[self.int64_field_name] for r in res] self.query_expr = query_expr delete_ids = self.ids[:len(self.ids) // 2] # delete half of ids self.delete_expr = f'{self.int64_field_name} in {delete_ids}' def update_delete_expr(self): res, _ = self.c_wrap.query(self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name) all_ids = [r[self.int64_field_name] for r in res] if len(all_ids) < 100: # insert data to make sure there are enough ids to delete self.insert_data(nb=10000) res, _ = self.c_wrap.query(self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name) all_ids = [r[self.int64_field_name] for r in res] delete_ids = all_ids[:3000] # delete 3000 ids self.delete_expr = f'{self.int64_field_name} in {delete_ids}' @trace() def delete_entities(self): res, result = self.c_wrap.delete(expr=self.delete_expr, timeout=timeout, partition_name=self.p_name) return res, result @exception_handler() def run_task(self): self.update_delete_expr() res, result = self.delete_entities() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class DeleteFreshnessChecker(Checker): """check delete freshness operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("DeleteChecker_") super().__init__(collection_name=collection_name, schema=schema) res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, index_name=self.index_name, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load() # load before query self.insert_data() query_expr = f'{self.int64_field_name} > 0' res, _ = self.c_wrap.query(query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name) self.ids = [r[self.int64_field_name] for r in res] self.query_expr = query_expr delete_ids = self.ids[:len(self.ids) // 2] # delete half of ids self.delete_expr = f'{self.int64_field_name} in {delete_ids}' def update_delete_expr(self): res, _ = self.c_wrap.query(self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name) all_ids = [r[self.int64_field_name] for r in res] if len(all_ids) < 100: # insert data to make sure there are enough ids to delete self.insert_data(nb=10000) res, _ = self.c_wrap.query(self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name) all_ids = [r[self.int64_field_name] for r in res] delete_ids = all_ids[:len(all_ids) // 2] # delete half of ids self.delete_expr = f'{self.int64_field_name} in {delete_ids}' def delete_entities(self): res, result = self.c_wrap.delete(expr=self.delete_expr, timeout=timeout, partition_name=self.p_name) return res, result @trace() def delete_freshness(self): while True: res, result = self.c_wrap.query(self.delete_expr, timeout=timeout, output_fields=[f'{self.int64_field_name}'], check_task=CheckTasks.check_nothing) if len(res) == 0: break return res, result @exception_handler() def run_task(self): self.update_delete_expr() res, result = self.delete_entities() res, result = self.delete_freshness() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP) class CompactChecker(Checker): """check compact operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("CompactChecker_") super().__init__(collection_name=collection_name, schema=schema) self.ut = ApiUtilityWrapper() res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, index_name=self.index_name, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load() # load before compact @trace() def compact(self): res, result = self.c_wrap.compact(timeout=timeout) self.c_wrap.wait_for_compaction_completed() self.c_wrap.get_compaction_plans() return res, result @exception_handler() def run_task(self): res, result = self.compact() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class LoadBalanceChecker(Checker): """check load balance operations in a dependent thread""" def __init__(self, collection_name=None, schema=None): if collection_name is None: collection_name = cf.gen_unique_str("LoadBalanceChecker_") super().__init__(collection_name=collection_name, schema=schema) self.utility_wrap = ApiUtilityWrapper() res, result = self.c_wrap.create_index(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM, index_name=self.index_name, timeout=timeout, enable_traceback=enable_traceback, check_task=CheckTasks.check_nothing) self.c_wrap.load() self.sealed_segment_ids = None self.dst_node_ids = None self.src_node_id = None @trace() def load_balance(self): res, result = self.utility_wrap.load_balance( self.c_wrap.name, self.src_node_id, self.dst_node_ids, self.sealed_segment_ids) return res, result def prepare(self): """prepare load balance params""" res, _ = self.c_wrap.get_replicas() # find a group which has multi nodes group_nodes = [] for g in res.groups: if len(g.group_nodes) >= 2: group_nodes = list(g.group_nodes) break self.src_node_id = group_nodes[0] self.dst_node_ids = group_nodes[1:] res, _ = self.utility_wrap.get_query_segment_info(self.c_wrap.name) segment_distribution = cf.get_segment_distribution(res) self.sealed_segment_ids = segment_distribution[self.src_node_id]["sealed"] @exception_handler() def run_task(self): self.prepare() res, result = self.load_balance() return res, result def keep_running(self): while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class BulkInsertChecker(Checker): """check bulk insert operations in a dependent thread""" def __init__(self, collection_name=None, files=[], use_one_collection=False, dim=ct.default_dim, schema=None, insert_data=False, minio_endpoint=None, bucket_name=None): if collection_name is None: collection_name = cf.gen_unique_str("BulkInsertChecker_") super().__init__(collection_name=collection_name, dim=dim, schema=schema, insert_data=insert_data) self.utility_wrap = ApiUtilityWrapper() self.schema = cf.gen_bulk_insert_collection_schema() if schema is None else schema self.files = files self.recheck_failed_task = False self.failed_tasks = [] self.failed_tasks_id = [] self.use_one_collection = use_one_collection # if True, all tasks will use one collection to bulk insert self.c_name = collection_name self.minio_endpoint = minio_endpoint self.bucket_name = bucket_name def prepare(self, data_size=100000): with RemoteBulkWriter( schema=self.schema, file_type=BulkFileType.NUMPY, remote_path="bulk_data", connect_param=RemoteBulkWriter.ConnectParam( endpoint=self.minio_endpoint, access_key="minioadmin", secret_key="minioadmin", bucket_name=self.bucket_name ) ) as remote_writer: for i in range(data_size): row = cf.get_row_data_by_schema(nb=1, schema=self.schema)[0] remote_writer.append_row(row) remote_writer.commit() batch_files = remote_writer.batch_files log.info(f"batch files: {batch_files}") self.files = batch_files[0] def update(self, files=None, schema=None): if files is not None: self.files = files if schema is not None: self.schema = schema def get_bulk_insert_task_state(self): state_map = {} for task_id in self.failed_tasks_id: state, _ = self.utility_wrap.get_bulk_insert_state(task_id=task_id) state_map[task_id] = state return state_map @trace() def bulk_insert(self): log.info(f"bulk insert collection name: {self.c_name}") task_ids, result = self.utility_wrap.do_bulk_insert(collection_name=self.c_name, files=self.files) log.info(f"task ids {task_ids}") completed, result = self.utility_wrap.wait_for_bulk_insert_tasks_completed(task_ids=[task_ids], timeout=720) return task_ids, completed @exception_handler() def run_task(self): if not self.use_one_collection: if self.recheck_failed_task and self.failed_tasks: self.c_name = self.failed_tasks.pop(0) log.debug(f"check failed task: {self.c_name}") else: self.c_name = cf.gen_unique_str("BulkInsertChecker_") self.c_wrap.init_collection(name=self.c_name, schema=self.schema) log.info(f"collection schema: {self.c_wrap.schema}") # bulk insert data num_entities = self.c_wrap.num_entities log.info(f"before bulk insert, collection {self.c_name} has num entities {num_entities}") task_ids, completed = self.bulk_insert() num_entities = self.c_wrap.num_entities log.info(f"after bulk insert, collection {self.c_name} has num entities {num_entities}") if not completed: self.failed_tasks.append(self.c_name) self.failed_tasks_id.append(task_ids) return task_ids, completed def keep_running(self): self.prepare() while self._keep_running: self.run_task() sleep(constants.WAIT_PER_OP / 10) class TestResultAnalyzer(unittest.TestCase): def test_get_stage_success_rate(self): ra = ResultAnalyzer() res = ra.get_stage_success_rate() print(res) if __name__ == '__main__': unittest.main()