// Copyright (C) 2019-2020 Zilliz. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software distributed under the License // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express // or implied. See the License for the specific language governing permissions and limitations under the License #include #include #include #include #include #include #include #include "common/Json.h" #include "common/Types.h" #include "pb/plan.pb.h" #include "query/Expr.h" #include "query/ExprImpl.h" #include "query/Plan.h" #include "query/PlanNode.h" #include "query/PlanProto.h" #include "query/generated/ShowPlanNodeVisitor.h" #include "query/generated/ExecExprVisitor.h" #include "segcore/SegmentGrowingImpl.h" #include "simdjson/padded_string.h" #include "segcore/segment_c.h" #include "test_utils/DataGen.h" #include "index/IndexFactory.h" #include "exec/expression/Expr.h" #include "exec/Task.h" TEST(Expr, Range) { SUCCEED(); using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; // std::string dsl_string = R"({ // "bool": { // "must": [ // { // "range": { // "age": { // "GT": 1, // "LT": 100 // } // } // }, // { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10, // "round_decimal": 3 // } // } // } // ] // } // })"; const char* raw_plan = R"(vector_anns: < field_id: 100 predicates: < binary_expr: < op: LogicalAnd left: < unary_range_expr: < column_info: < field_id: 101 data_type: Int32 > op: GreaterThan value: < int64_val: 1 > > > right: < unary_range_expr: < column_info: < field_id: 101 data_type: Int32 > op: LessThan value: < int64_val: 100 > > > > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto plan_str = translate_text_plan_to_binary_plan(raw_plan); auto schema = std::make_shared(); schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); schema->AddDebugField("age", DataType::INT32); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); ShowPlanNodeVisitor shower; Assert(plan->tag2field_.at("$0") == schema->get_field_id(FieldName("fakevec"))); } TEST(Expr, RangeBinary) { SUCCEED(); using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; // std::string dsl_string = R"({ // "bool": { // "must": [ // { // "range": { // "age": { // "GT": 1, // "LT": 100 // } // } // }, // { // "vector": { // "fakevec": { // "metric_type": "Jaccard", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10, // "round_decimal": 3 // } // } // } // ] // } // })"; const char* raw_plan = R"(vector_anns: < field_id: 100 predicates: < binary_expr: < op: LogicalAnd left: < unary_range_expr: < column_info: < field_id: 101 data_type: Int32 > op: GreaterThan value: < int64_val: 1 > > > right: < unary_range_expr: < column_info: < field_id: 101 data_type: Int32 > op: LessThan value: < int64_val: 100 > > > > > query_info: < topk: 10 round_decimal: 3 metric_type: "JACCARD" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto plan_str = translate_text_plan_to_binary_plan(raw_plan); auto schema = std::make_shared(); schema->AddDebugField( "fakevec", DataType::VECTOR_BINARY, 512, knowhere::metric::JACCARD); schema->AddDebugField("age", DataType::INT32); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); ShowPlanNodeVisitor shower; Assert(plan->tag2field_.at("$0") == schema->get_field_id(FieldName("fakevec"))); } TEST(Expr, InvalidRange) { SUCCEED(); using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; // std::string dsl_string = R"( // { // "bool": { // "must": [ // { // "range": { // "age": { // "GT": 1, // "LT": "100" // } // } // }, // { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10 // } // } // } // ] // } // })"; const char* raw_plan = R"(vector_anns: < field_id: 100 predicates: < binary_expr: < op: LogicalAnd left: < unary_range_expr: < column_info: < field_id: 102 data_type: Int64 > op: GreaterThan value: < int64_val: 1 > > > right: < unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: LessThan value: < int64_val: 100 > > > > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto plan_str = translate_text_plan_to_binary_plan(raw_plan); auto schema = std::make_shared(); schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); schema->AddDebugField("age", DataType::INT32); ASSERT_ANY_THROW( CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size())); } TEST(Expr, ShowExecutor) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto node = std::make_unique(); auto schema = std::make_shared(); auto metric_type = knowhere::metric::L2; auto field_id = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, metric_type); int64_t num_queries = 100L; auto raw_data = DataGen(schema, num_queries); auto& info = node->search_info_; info.metric_type_ = metric_type; info.topk_ = 20; info.field_id_ = field_id; node->predicate_ = std::nullopt; ShowPlanNodeVisitor show_visitor; PlanNodePtr base(node.release()); auto res = show_visitor.call_child(*base); auto dup = res; dup["data"] = "...collased..."; std::cout << dup.dump(4); } TEST(Expr, TestRange) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector>> testcases = { {R"(binary_range_expr: < column_info: < field_id: 101 data_type: Int64 > lower_inclusive: false, upper_inclusive: false, lower_value: < int64_val: 2000 > upper_value: < int64_val: 3000 > >)", [](int v) { return 2000 < v && v < 3000; }}, {R"(binary_range_expr: < column_info: < field_id: 101 data_type: Int64 > lower_inclusive: true, upper_inclusive: false, lower_value: < int64_val: 2000 > upper_value: < int64_val: 3000 > >)", [](int v) { return 2000 <= v && v < 3000; }}, {R"(binary_range_expr: < column_info: < field_id: 101 data_type: Int64 > lower_inclusive: false, upper_inclusive: true, lower_value: < int64_val: 2000 > upper_value: < int64_val: 3000 > >)", [](int v) { return 2000 < v && v <= 3000; }}, {R"(binary_range_expr: < column_info: < field_id: 101 data_type: Int64 > lower_inclusive: true, upper_inclusive: true, lower_value: < int64_val: 2000 > upper_value: < int64_val: 3000 > >)", [](int v) { return 2000 <= v && v <= 3000; }}, {R"(unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: GreaterEqual, value: < int64_val: 2000 > >)", [](int v) { return v >= 2000; }}, {R"(unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: GreaterThan, value: < int64_val: 2000 > >)", [](int v) { return v > 2000; }}, {R"(unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: LessEqual, value: < int64_val: 2000 > >)", [](int v) { return v <= 2000; }}, {R"(unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: LessThan, value: < int64_val: 2000 > >)", [](int v) { return v < 2000; }}, {R"(unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: Equal, value: < int64_val: 2000 > >)", [](int v) { return v == 2000; }}, {R"(unary_range_expr: < column_info: < field_id: 101 data_type: Int64 > op: NotEqual, value: < int64_val: 2000 > >)", [](int v) { return v != 2000; }}, }; // std::string dsl_string_tmp = R"({ // "bool": { // "must": [ // { // "range": { // "age": { // @@@@ // } // } // }, // { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10, // "round_decimal": 3 // } // } // } // ] // } // })"; std::string raw_plan_tmp = R"(vector_anns: < field_id: 100 predicates: < @@@@ > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i64_fid = schema->AddDebugField("age", DataType::INT64); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector age_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_age_col = raw_data.get_col(i64_fid); age_col.insert(age_col.end(), new_age_col.begin(), new_age_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto [clause, ref_func] : testcases) { auto loc = raw_plan_tmp.find("@@@@"); auto raw_plan = raw_plan_tmp; raw_plan.replace(loc, 4, clause); auto plan_str = translate_text_plan_to_binary_plan(raw_plan.c_str()); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto val = age_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } } } TEST(Expr, TestBinaryRangeJSON) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; struct Testcase { bool lower_inclusive; bool upper_inclusive; int64_t lower; int64_t upper; std::vector nested_path; }; std::vector testcases{ {true, false, 10, 20, {"int"}}, {true, true, 20, 30, {"int"}}, {false, true, 30, 40, {"int"}}, {false, false, 40, 50, {"int"}}, {true, false, 10, 20, {"double"}}, {true, true, 20, 30, {"double"}}, {false, true, 30, 40, {"double"}}, {false, false, 40, 50, {"double"}}, }; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto testcase : testcases) { auto check = [&](int64_t value) { int64_t lower = testcase.lower, upper = testcase.upper; if (!testcase.lower_inclusive) { lower++; } if (!testcase.upper_inclusive) { upper--; } return lower <= value && value <= upper; }; auto pointer = milvus::Json::pointer(testcase.nested_path); RetrievePlanNode plan; milvus::proto::plan::GenericValue lower_val; lower_val.set_int64_val(testcase.lower); milvus::proto::plan::GenericValue upper_val; upper_val.set_int64_val(testcase.upper); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), lower_val, upper_val, testcase.lower_inclusive, testcase.upper_inclusive); BitsetType final; plan.filter_plannode_ = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode( plan.filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (testcase.nested_path[0] == "int") { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = check(val); ASSERT_EQ(ans, ref) << val << testcase.lower_inclusive << testcase.lower << testcase.upper_inclusive << testcase.upper; } else { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = check(val); ASSERT_EQ(ans, ref) << val << testcase.lower_inclusive << testcase.lower << testcase.upper_inclusive << testcase.upper; } } } } TEST(Expr, TestExistsJson) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; struct Testcase { std::vector nested_path; }; std::vector testcases{ {{"A"}}, {{"int"}}, {{"double"}}, {{"B"}}, }; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto testcase : testcases) { auto check = [&](bool value) { return value; }; RetrievePlanNode plan; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared(milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path)); BitsetType final; plan.filter_plannode_ = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode( plan.filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto val = milvus::Json(simdjson::padded_string(json_col[i])) .exist(pointer); auto ref = check(val); ASSERT_EQ(ans, ref); } } } template T GetValueFromProto(const milvus::proto::plan::GenericValue& value_proto) { if constexpr (std::is_same_v) { Assert(value_proto.val_case() == milvus::proto::plan::GenericValue::kBoolVal); return static_cast(value_proto.bool_val()); } else if constexpr (std::is_integral_v) { Assert(value_proto.val_case() == milvus::proto::plan::GenericValue::kInt64Val); return static_cast(value_proto.int64_val()); } else if constexpr (std::is_floating_point_v) { Assert(value_proto.val_case() == milvus::proto::plan::GenericValue::kFloatVal); return static_cast(value_proto.float_val()); } else if constexpr (std::is_same_v) { Assert(value_proto.val_case() == milvus::proto::plan::GenericValue::kStringVal); return static_cast(value_proto.string_val()); } else if constexpr (std::is_same_v) { Assert(value_proto.val_case() == milvus::proto::plan::GenericValue::kArrayVal); return static_cast(value_proto.array_val()); } else if constexpr (std::is_same_v) { return static_cast(value_proto); } else { PanicInfo(milvus::ErrorCode::UnexpectedError, "unsupported generic value type"); } }; TEST(Expr, TestUnaryRangeJson) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; struct Testcase { int64_t val; std::vector nested_path; }; std::vector testcases{ {10, {"int"}}, {20, {"int"}}, {30, {"int"}}, {40, {"int"}}, {10, {"double"}}, {20, {"double"}}, {30, {"double"}}, {40, {"double"}}, }; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); std::vector ops{ OpType::Equal, OpType::NotEqual, OpType::GreaterThan, OpType::GreaterEqual, OpType::LessThan, OpType::LessEqual, }; for (const auto& testcase : testcases) { auto check = [&](int64_t value) { return value == testcase.val; }; std::function f = check; for (auto& op : ops) { switch (op) { case OpType::Equal: { f = [&](int64_t value) { return value == testcase.val; }; break; } case OpType::NotEqual: { f = [&](int64_t value) { return value != testcase.val; }; break; } case OpType::GreaterEqual: { f = [&](int64_t value) { return value >= testcase.val; }; break; } case OpType::GreaterThan: { f = [&](int64_t value) { return value > testcase.val; }; break; } case OpType::LessEqual: { f = [&](int64_t value) { return value <= testcase.val; }; break; } case OpType::LessThan: { f = [&](int64_t value) { return value < testcase.val; }; break; } default: { PanicInfo(Unsupported, "unsupported range node"); } } auto pointer = milvus::Json::pointer(testcase.nested_path); proto::plan::GenericValue value; value.set_int64_val(testcase.val); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), op, value); BitsetType final; auto plan = std::make_shared( DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (testcase.nested_path[0] == "int") { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = f(val); ASSERT_EQ(ans, ref); } else { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = f(val); ASSERT_EQ(ans, ref); } } } } struct TestArrayCase { proto::plan::GenericValue val; std::vector nested_path; }; proto::plan::GenericValue value; auto* arr = value.mutable_array_val(); arr->set_same_type(true); proto::plan::GenericValue int_val1; int_val1.set_int64_val(int64_t(1)); arr->add_array()->CopyFrom(int_val1); proto::plan::GenericValue int_val2; int_val2.set_int64_val(int64_t(2)); arr->add_array()->CopyFrom(int_val2); proto::plan::GenericValue int_val3; int_val3.set_int64_val(int64_t(3)); arr->add_array()->CopyFrom(int_val3); std::vector array_cases = {{value, {"array"}}}; for (const auto& testcase : array_cases) { auto check = [&](OpType op) { if (testcase.nested_path[0] == "array" && op == OpType::Equal) { return true; } return false; }; for (auto& op : ops) { auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), op, testcase.val); BitsetType final; auto plan = std::make_shared( DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto ref = check(op); ASSERT_EQ(ans, ref) << "@" << i << "op" << op; } } } } TEST(Expr, TestTermJson) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; struct Testcase { std::vector term; std::vector nested_path; }; std::vector testcases{ {{1, 2, 3, 4}, {"int"}}, {{10, 100, 1000, 10000}, {"int"}}, {{100, 10000, 9999, 444}, {"int"}}, {{23, 42, 66, 17, 25}, {"int"}}, }; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 100; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto testcase : testcases) { auto check = [&](int64_t value) { std::unordered_set term_set(testcase.term.begin(), testcase.term.end()); return term_set.find(value) != term_set.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (const auto& val : testcase.term) { proto::plan::GenericValue value; value.set_int64_val(val); values.push_back(value); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = check(val); ASSERT_EQ(ans, ref); } } } TEST(Expr, TestTerm) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto vec_2k_3k = [] { std::string buf; for (int i = 2000; i < 3000; ++i) { buf += "values: < int64_val: " + std::to_string(i) + " >\n"; } return buf; }(); std::vector>> testcases = { {R"(values: < int64_val: 2000 > values: < int64_val: 3000 > )", [](int v) { return v == 2000 || v == 3000; }}, {R"(values: < int64_val: 2000 >)", [](int v) { return v == 2000; }}, {R"(values: < int64_val: 3000 >)", [](int v) { return v == 3000; }}, {R"()", [](int v) { return false; }}, {vec_2k_3k, [](int v) { return 2000 <= v && v < 3000; }}, }; // std::string dsl_string_tmp = R"({ // "bool": { // "must": [ // { // "term": { // "age": { // "values": @@@@, // "is_in_field" : false // } // } // }, // { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10, // "round_decimal": 3 // } // } // } // ] // } // })"; std::string raw_plan_tmp = R"(vector_anns: < field_id: 100 predicates: < term_expr: < column_info: < field_id: 101 data_type: Int64 > @@@@ > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i64_fid = schema->AddDebugField("age", DataType::INT64); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector age_col; int num_iters = 100; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_age_col = raw_data.get_col(i64_fid); age_col.insert(age_col.end(), new_age_col.begin(), new_age_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto [clause, ref_func] : testcases) { auto loc = raw_plan_tmp.find("@@@@"); auto raw_plan = raw_plan_tmp; raw_plan.replace(loc, 4, clause); auto plan_str = translate_text_plan_to_binary_plan(raw_plan.c_str()); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto val = age_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } } } TEST(Expr, TestCompare) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector>> testcases = { {R"(LessThan)", [](int a, int64_t b) { return a < b; }}, {R"(LessEqual)", [](int a, int64_t b) { return a <= b; }}, {R"(GreaterThan)", [](int a, int64_t b) { return a > b; }}, {R"(GreaterEqual)", [](int a, int64_t b) { return a >= b; }}, {R"(Equal)", [](int a, int64_t b) { return a == b; }}, {R"(NotEqual)", [](int a, int64_t b) { return a != b; }}, }; // std::string dsl_string_tpl = R"({ // "bool": { // "must": [ // { // "compare": { // %1%: [ // "age1", // "age2" // ] // } // }, // { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10, // "round_decimal": 3 // } // } // } // ] // } // })"; std::string raw_plan_tmp = R"(vector_anns: < field_id: 100 predicates: < compare_expr: < left_column_info: < field_id: 101 data_type: Int32 > right_column_info: < field_id: 102 data_type: Int64 > op: @@@@ > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i32_fid = schema->AddDebugField("age1", DataType::INT32); auto i64_fid = schema->AddDebugField("age2", DataType::INT64); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector age1_col; std::vector age2_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_age1_col = raw_data.get_col(i32_fid); auto new_age2_col = raw_data.get_col(i64_fid); age1_col.insert( age1_col.end(), new_age1_col.begin(), new_age1_col.end()); age2_col.insert( age2_col.end(), new_age2_col.begin(), new_age2_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto [clause, ref_func] : testcases) { auto loc = raw_plan_tmp.find("@@@@"); auto raw_plan = raw_plan_tmp; raw_plan.replace(loc, 4, clause); auto plan_str = translate_text_plan_to_binary_plan(raw_plan.c_str()); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto val1 = age1_col[i]; auto val2 = age2_col[i]; auto ref = ref_func(val1, val2); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << boost::format("[%1%, %2%]") % val1 % val2; } } } TEST(Expr, TestCompareWithScalarIndex) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector>> testcases = { {R"(LessThan)", [](int a, int64_t b) { return a < b; }}, {R"(LessEqual)", [](int a, int64_t b) { return a <= b; }}, {R"(GreaterThan)", [](int a, int64_t b) { return a > b; }}, {R"(GreaterEqual)", [](int a, int64_t b) { return a >= b; }}, {R"(Equal)", [](int a, int64_t b) { return a == b; }}, {R"(NotEqual)", [](int a, int64_t b) { return a != b; }}, }; std::string serialized_expr_plan = R"(vector_anns: < field_id: %1% predicates: < compare_expr: < left_column_info: < field_id: %3% data_type: %4% > right_column_info: < field_id: %5% data_type: %6% > op: %2% > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i32_fid = schema->AddDebugField("age32", DataType::INT32); auto i64_fid = schema->AddDebugField("age64", DataType::INT64); schema->set_primary_field_id(i64_fid); auto seg = CreateSealedSegment(schema); int N = 1000; auto raw_data = DataGen(schema, N); segcore::LoadIndexInfo load_index_info; // load index for int32 field auto age32_col = raw_data.get_col(i32_fid); age32_col[0] = 1000; GenScalarIndexing(N, age32_col.data()); auto age32_index = milvus::index::CreateScalarIndexSort(); age32_index->Build(N, age32_col.data()); load_index_info.field_id = i32_fid.get(); load_index_info.field_type = DataType::INT32; load_index_info.index = std::move(age32_index); seg->LoadIndex(load_index_info); // load index for int64 field auto age64_col = raw_data.get_col(i64_fid); age64_col[0] = 2000; GenScalarIndexing(N, age64_col.data()); auto age64_index = milvus::index::CreateScalarIndexSort(); age64_index->Build(N, age64_col.data()); load_index_info.field_id = i64_fid.get(); load_index_info.field_type = DataType::INT64; load_index_info.index = std::move(age64_index); seg->LoadIndex(load_index_info); query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); for (auto [clause, ref_func] : testcases) { auto dsl_string = boost::format(serialized_expr_plan) % vec_fid.get() % clause % i32_fid.get() % proto::schema::DataType_Name(int(DataType::INT32)) % i64_fid.get() % proto::schema::DataType_Name(int(DataType::INT64)); auto binary_plan = translate_text_plan_to_binary_plan(dsl_string.str().data()); auto plan = CreateSearchPlanByExpr( *schema, binary_plan.data(), binary_plan.size()); // std::cout << ShowPlanNodeVisitor().call_child(*plan->plan_node_) << std::endl; BitsetType final; visitor.ExecuteExprNode( plan->plan_node_->filter_plannode_.value(), seg.get(), N, final); EXPECT_EQ(final.size(), N); for (int i = 0; i < N; ++i) { auto ans = final[i]; auto val1 = age32_col[i]; auto val2 = age64_col[i]; auto ref = ref_func(val1, val2); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << boost::format("[%1%, %2%]") % val1 % val2; } } } TEST(Expr, TestCompareExpr) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto bool_fid = schema->AddDebugField("bool", DataType::BOOL); auto bool_1_fid = schema->AddDebugField("bool1", DataType::BOOL); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto float_1_fid = schema->AddDebugField("float1", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); auto double_1_fid = schema->AddDebugField("double1", DataType::DOUBLE); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto str3_fid = schema->AddDebugField("string3", DataType::VARCHAR); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); size_t N = 1000; auto raw_data = DataGen(schema, N); auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); auto build_expr = [&](enum DataType type) -> expr::TypedExprPtr { switch (type) { case DataType::BOOL: { auto compare_expr = std::make_shared( bool_fid, bool_1_fid, DataType::BOOL, DataType::BOOL, proto::plan::OpType::LessThan); return compare_expr; } case DataType::INT8: { auto compare_expr = std::make_shared(int8_fid, int8_1_fid, DataType::INT8, DataType::INT8, OpType::LessThan); return compare_expr; } case DataType::INT16: { auto compare_expr = std::make_shared(int16_fid, int16_1_fid, DataType::INT16, DataType::INT16, OpType::LessThan); return compare_expr; } case DataType::INT32: { auto compare_expr = std::make_shared(int32_fid, int32_1_fid, DataType::INT32, DataType::INT32, OpType::LessThan); return compare_expr; } case DataType::INT64: { auto compare_expr = std::make_shared(int64_fid, int64_1_fid, DataType::INT64, DataType::INT64, OpType::LessThan); return compare_expr; } case DataType::FLOAT: { auto compare_expr = std::make_shared(float_fid, float_1_fid, DataType::FLOAT, DataType::FLOAT, OpType::LessThan); return compare_expr; } case DataType::DOUBLE: { auto compare_expr = std::make_shared(double_fid, double_1_fid, DataType::DOUBLE, DataType::DOUBLE, OpType::LessThan); return compare_expr; } case DataType::VARCHAR: { auto compare_expr = std::make_shared(str2_fid, str3_fid, DataType::VARCHAR, DataType::VARCHAR, OpType::LessThan); return compare_expr; } default: return std::make_shared(int8_fid, int8_1_fid, DataType::INT8, DataType::INT8, OpType::LessThan); } }; std::cout << "start compare test" << std::endl; auto expr = build_expr(DataType::BOOL); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); expr = build_expr(DataType::INT8); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); expr = build_expr(DataType::INT16); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); expr = build_expr(DataType::INT32); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); expr = build_expr(DataType::INT64); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); expr = build_expr(DataType::FLOAT); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); expr = build_expr(DataType::DOUBLE); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); std::cout << "end compare test" << std::endl; } TEST(Expr, TestMultiLogicalExprsOptimization) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); size_t N = 10000; auto raw_data = DataGen(schema, N); auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } ExecExprVisitor visitor(*seg, seg->get_row_count(), MAX_TIMESTAMP); auto build_expr_with_optim = [&]() -> std::shared_ptr { ExprPtr child1_expr = std::make_unique>( ColumnInfo(int64_fid, DataType::INT64), proto::plan::OpType::LessThan, -1, proto::plan::GenericValue::ValCase::kInt64Val); ExprPtr child2_expr = std::make_unique>( ColumnInfo(int64_fid, DataType::INT64), proto::plan::OpType::NotEqual, 100, proto::plan::GenericValue::ValCase::kInt64Val); return std::make_shared( LogicalBinaryExpr::OpType::LogicalAnd, child1_expr, child2_expr); }; auto build_expr = [&]() -> std::shared_ptr { ExprPtr child1_expr = std::make_unique>( ColumnInfo(int64_fid, DataType::INT64), proto::plan::OpType::GreaterThan, 10, proto::plan::GenericValue::ValCase::kInt64Val); ExprPtr child2_expr = std::make_unique>( ColumnInfo(int64_fid, DataType::INT64), proto::plan::OpType::NotEqual, 100, proto::plan::GenericValue::ValCase::kInt64Val); return std::make_shared( LogicalBinaryExpr::OpType::LogicalAnd, child1_expr, child2_expr); }; auto expr = build_expr_with_optim(); auto cost_op = 0; for (int i = 0; i < 10; ++i) { auto start = std::chrono::steady_clock::now(); auto final = visitor.call_child(*expr); auto cost = std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); std::cout << "cost: " << cost << "us" << std::endl; cost_op += cost; } cost_op = cost_op / 10.0; std::cout << cost_op << std::endl; expr = build_expr(); auto cost_no_op = 0; for (int i = 0; i < 10; ++i) { auto start = std::chrono::steady_clock::now(); auto final = visitor.call_child(*expr); auto cost = std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); std::cout << "cost: " << cost << "us" << std::endl; cost_no_op += cost; } cost_no_op = cost_no_op / 10.0; std::cout << cost_no_op << std::endl; ASSERT_LT(cost_op, cost_no_op); } TEST(Expr, TestExprs) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 10000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } ExecExprVisitor visitor(*seg, seg->get_row_count(), MAX_TIMESTAMP); enum ExprType { UnaryRangeExpr = 0, TermExprImpl = 1, CompareExpr = 2, LogicalUnaryExpr = 3, BinaryRangeExpr = 4, LogicalBinaryExpr = 5, BinaryArithOpEvalRangeExpr = 6, }; auto build_expr = [&](enum ExprType test_type, int n) -> std::shared_ptr { switch (test_type) { case UnaryRangeExpr: return std::make_shared>( ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, 10, proto::plan::GenericValue::ValCase::kInt64Val); break; case TermExprImpl: { std::vector retrieve_ints; for (int i = 0; i < n; ++i) { retrieve_ints.push_back("xxxxxx" + std::to_string(i % 10)); } return std::make_shared>( ColumnInfo(str1_fid, DataType::VARCHAR), retrieve_ints, proto::plan::GenericValue::ValCase::kStringVal); // std::vector retrieve_ints; // for (int i = 0; i < n; ++i) { // retrieve_ints.push_back(i); // } // return std::make_shared>( // ColumnInfo(double_fid, DataType::DOUBLE), // retrieve_ints, // proto::plan::GenericValue::ValCase::kFloatVal); break; } case CompareExpr: { auto compare_expr = std::make_shared(); compare_expr->op_type_ = OpType::LessThan; compare_expr->left_data_type_ = DataType::INT8; compare_expr->left_field_id_ = int8_fid; compare_expr->right_data_type_ = DataType::INT8; compare_expr->right_field_id_ = int8_1_fid; return compare_expr; break; } case BinaryRangeExpr: { return std::make_shared>( ColumnInfo(int64_fid, DataType::INT64), proto::plan::GenericValue::ValCase::kInt64Val, true, true, 10, 45); break; } case LogicalUnaryExpr: { ExprPtr child_expr = std::make_unique>( ColumnInfo(int32_fid, DataType::INT32), proto::plan::OpType::GreaterThan, 10, proto::plan::GenericValue::ValCase::kInt64Val); return std::make_shared( LogicalUnaryExpr::OpType::LogicalNot, child_expr); break; } case LogicalBinaryExpr: { ExprPtr child1_expr = std::make_unique>( ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, 10, proto::plan::GenericValue::ValCase::kInt64Val); ExprPtr child2_expr = std::make_unique>( ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::NotEqual, 10, proto::plan::GenericValue::ValCase::kInt64Val); return std::make_shared( LogicalBinaryExpr::OpType::LogicalXor, child1_expr, child2_expr); break; } case BinaryArithOpEvalRangeExpr: { return std::make_shared< query::BinaryArithOpEvalRangeExprImpl>( ColumnInfo(int8_fid, DataType::INT8), proto::plan::GenericValue::ValCase::kInt64Val, proto::plan::ArithOpType::Add, 10, proto::plan::OpType::Equal, 100); break; } default: return std::make_shared>( ColumnInfo(int64_fid, DataType::INT64), proto::plan::GenericValue::ValCase::kInt64Val, true, true, 10, 45); break; } }; auto test_case = [&](int n) { auto expr = build_expr(TermExprImpl, n); std::cout << "start test" << std::endl; auto start = std::chrono::steady_clock::now(); auto final = visitor.call_child(*expr); std::cout << n << "cost: " << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << "us" << std::endl; }; test_case(3); test_case(10); test_case(20); test_case(30); test_case(50); test_case(100); test_case(200); // test_case(500); } TEST(Expr, test_term_pk) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); schema->AddField(FieldName("Timestamp"), FieldId(1), DataType::INT64); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); schema->set_primary_field_id(int64_fid); auto seg = CreateSealedSegment(schema); int N = 100000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } std::vector retrieve_ints; for (int i = 0; i < 10; ++i) { proto::plan::GenericValue val; val.set_int64_val(i); retrieve_ints.push_back(val); } auto expr = std::make_shared( expr::ColumnInfo(int64_fid, DataType::INT64), retrieve_ints); query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); EXPECT_EQ(final.size(), N); for (int i = 0; i < 10; ++i) { EXPECT_EQ(final[i], true); } for (int i = 10; i < N; ++i) { EXPECT_EQ(final[i], false); } retrieve_ints.clear(); for (int i = 0; i < 10; ++i) { proto::plan::GenericValue val; val.set_int64_val(i + N); retrieve_ints.push_back(val); } expr = std::make_shared( expr::ColumnInfo(int64_fid, DataType::INT64), retrieve_ints); plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg.get(), N, final); EXPECT_EQ(final.size(), N); for (int i = 0; i < N; ++i) { EXPECT_EQ(final[i], false); } } TEST(Expr, TestSealedSegmentGetBatchSize) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } proto::plan::GenericValue val; val.set_int64_val(10); auto expr = std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, val); auto plan_node = std::make_shared(DEFAULT_PLANNODE_ID, expr); std::vector test_batch_size = { 8192, 10240, 20480, 30720, 40960, 102400, 204800, 307200}; for (const auto& batch_size : test_batch_size) { EXEC_EVAL_EXPR_BATCH_SIZE = batch_size; auto plan = plan::PlanFragment(plan_node); auto query_context = std::make_shared( "query id", seg.get(), N, MAX_TIMESTAMP); auto task = milvus::exec::Task::Create("task_expr", plan, 0, query_context); auto last_num = N % batch_size; auto iter_num = last_num == 0 ? N / batch_size : N / batch_size + 1; int iter = 0; for (;;) { auto result = task->Next(); if (!result) { break; } auto childrens = result->childrens(); if (++iter != iter_num) { EXPECT_EQ(childrens[0]->size(), batch_size); } else { EXPECT_EQ(childrens[0]->size(), last_num); } } } } TEST(Expr, TestGrowingSegmentGetBatchSize) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); schema->set_primary_field_id(str1_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000000; auto raw_data = DataGen(schema, N); seg->PreInsert(N); seg->Insert(0, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); proto::plan::GenericValue val; val.set_int64_val(10); auto expr = std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, val); auto plan_node = std::make_shared(DEFAULT_PLANNODE_ID, expr); std::vector test_batch_size = { 8192, 10240, 20480, 30720, 40960, 102400, 204800, 307200}; for (const auto& batch_size : test_batch_size) { EXEC_EVAL_EXPR_BATCH_SIZE = batch_size; auto plan = plan::PlanFragment(plan_node); auto query_context = std::make_shared( "query id", seg.get(), N, MAX_TIMESTAMP); auto task = milvus::exec::Task::Create("task_expr", plan, 0, query_context); auto last_num = N % batch_size; auto iter_num = last_num == 0 ? N / batch_size : N / batch_size + 1; int iter = 0; for (;;) { auto result = task->Next(); if (!result) { break; } auto childrens = result->childrens(); if (++iter != iter_num) { EXPECT_EQ(childrens[0]->size(), batch_size); } else { EXPECT_EQ(childrens[0]->size(), last_num); } } } } TEST(Expr, TestUnaryBenchTest) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); std::vector> test_cases = { {int8_fid, DataType::INT8}, {int16_fid, DataType::INT16}, {int32_fid, DataType::INT32}, {int64_fid, DataType::INT64}, {float_fid, DataType::FLOAT}, {double_fid, DataType::DOUBLE}}; for (const auto& pair : test_cases) { std::cout << "start test type:" << int(pair.second) << std::endl; proto::plan::GenericValue val; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { val.set_float_val(10); } else { val.set_int64_val(10); } auto expr = std::make_shared( expr::ColumnInfo(pair.first, pair.second), proto::plan::OpType::GreaterThan, val); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); int64_t all_cost = 0; for (int i = 0; i < 10; i++) { auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); all_cost += std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); } std::cout << " cost: " << all_cost / 10.0 << "us" << std::endl; } } TEST(Expr, TestBinaryRangeBenchTest) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); std::vector> test_cases = { {int8_fid, DataType::INT8}, {int16_fid, DataType::INT16}, {int32_fid, DataType::INT32}, {int64_fid, DataType::INT64}, {float_fid, DataType::FLOAT}, {double_fid, DataType::DOUBLE}}; for (const auto& pair : test_cases) { std::cout << "start test type:" << int(pair.second) << std::endl; proto::plan::GenericValue lower; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { lower.set_float_val(10); } else { lower.set_int64_val(10); } proto::plan::GenericValue upper; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { upper.set_float_val(45); } else { upper.set_int64_val(45); } auto expr = std::make_shared( expr::ColumnInfo(pair.first, pair.second), lower, upper, true, true); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); int64_t all_cost = 0; for (int i = 0; i < 10; i++) { auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); all_cost += std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); } std::cout << " cost: " << all_cost / 10.0 << "us" << std::endl; } } TEST(Expr, TestLogicalUnaryBenchTest) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); std::vector> test_cases = { {int8_fid, DataType::INT8}, {int16_fid, DataType::INT16}, {int32_fid, DataType::INT32}, {int64_fid, DataType::INT64}, {float_fid, DataType::FLOAT}, {double_fid, DataType::DOUBLE}}; for (const auto& pair : test_cases) { std::cout << "start test type:" << int(pair.second) << std::endl; proto::plan::GenericValue val; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { val.set_float_val(10); } else { val.set_int64_val(10); } auto child_expr = std::make_shared( expr::ColumnInfo(pair.first, pair.second), proto::plan::OpType::GreaterThan, val); auto expr = std::make_shared( expr::LogicalUnaryExpr::OpType::LogicalNot, child_expr); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); int64_t all_cost = 0; for (int i = 0; i < 50; i++) { auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); all_cost += std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); } std::cout << " cost: " << all_cost / 50.0 << "us" << std::endl; } } TEST(Expr, TestBinaryLogicalBenchTest) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); std::vector> test_cases = { {int8_fid, DataType::INT8}, {int16_fid, DataType::INT16}, {int32_fid, DataType::INT32}, {int64_fid, DataType::INT64}, {float_fid, DataType::FLOAT}, {double_fid, DataType::DOUBLE}}; for (const auto& pair : test_cases) { std::cout << "start test type:" << int(pair.second) << std::endl; proto::plan::GenericValue val; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { val.set_float_val(-1000000); } else { val.set_int64_val(-1000000); } proto::plan::GenericValue val1; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { val1.set_float_val(-100); } else { val1.set_int64_val(-100); } auto child1_expr = std::make_shared( expr::ColumnInfo(pair.first, pair.second), proto::plan::OpType::LessThan, val); auto child2_expr = std::make_shared( expr::ColumnInfo(pair.first, pair.second), proto::plan::OpType::NotEqual, val1); auto expr = std::make_shared( expr::LogicalBinaryExpr::OpType::And, child1_expr, child2_expr); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); int64_t all_cost = 0; for (int i = 0; i < 50; i++) { auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); all_cost += std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); } std::cout << " cost: " << all_cost / 50.0 << "us" << std::endl; } } TEST(Expr, TestBinaryArithOpEvalRangeBenchExpr) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); std::vector> test_cases = { {int8_fid, DataType::INT8}, {int16_fid, DataType::INT16}, {int32_fid, DataType::INT32}, {int64_fid, DataType::INT64}, {float_fid, DataType::FLOAT}, {double_fid, DataType::DOUBLE}}; for (const auto& pair : test_cases) { std::cout << "start test type:" << int(pair.second) << std::endl; proto::plan::GenericValue val; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { val.set_float_val(100); } else { val.set_int64_val(100); } proto::plan::GenericValue right; if (pair.second == DataType::FLOAT || pair.second == DataType::DOUBLE) { right.set_float_val(10); } else { right.set_int64_val(10); } auto expr = std::make_shared( expr::ColumnInfo(pair.first, pair.second), proto::plan::OpType::Equal, proto::plan::ArithOpType::Add, val, right); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); int64_t all_cost = 0; for (int i = 0; i < 50; i++) { auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); all_cost += std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); } std::cout << " cost: " << all_cost / 50.0 << "us" << std::endl; } } TEST(Expr, TestCompareExprBenchTest) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto float_1_fid = schema->AddDebugField("float1", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); auto double_1_fid = schema->AddDebugField("double1", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); std::vector< std::pair, std::pair>> test_cases = { {{int8_fid, DataType::INT8}, {int8_1_fid, DataType::INT8}}, {{int16_fid, DataType::INT16}, {int16_fid, DataType::INT16}}, {{int32_fid, DataType::INT32}, {int32_1_fid, DataType::INT32}}, {{int64_fid, DataType::INT64}, {int64_1_fid, DataType::INT64}}, {{float_fid, DataType::FLOAT}, {float_1_fid, DataType::FLOAT}}, {{double_fid, DataType::DOUBLE}, {double_1_fid, DataType::DOUBLE}}}; for (const auto& pair : test_cases) { std::cout << "start test type:" << int(pair.first.second) << std::endl; proto::plan::GenericValue lower; auto expr = std::make_shared(pair.first.first, pair.second.first, pair.first.second, pair.second.second, OpType::LessThan); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); int64_t all_cost = 0; for (int i = 0; i < 10; i++) { auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); all_cost += std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count(); } std::cout << " cost: " << all_cost / 10 << "us" << std::endl; } } TEST(Expr, TestRefactorExprs) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto int8_fid = schema->AddDebugField("int8", DataType::INT8); auto int8_1_fid = schema->AddDebugField("int81", DataType::INT8); auto int16_fid = schema->AddDebugField("int16", DataType::INT16); auto int16_1_fid = schema->AddDebugField("int161", DataType::INT16); auto int32_fid = schema->AddDebugField("int32", DataType::INT32); auto int32_1_fid = schema->AddDebugField("int321", DataType::INT32); auto int64_fid = schema->AddDebugField("int64", DataType::INT64); auto int64_1_fid = schema->AddDebugField("int641", DataType::INT64); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); auto float_fid = schema->AddDebugField("float", DataType::FLOAT); auto double_fid = schema->AddDebugField("double", DataType::DOUBLE); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000000; auto raw_data = DataGen(schema, N); // load field data auto fields = schema->get_fields(); for (auto field_data : raw_data.raw_->fields_data()) { int64_t field_id = field_data.field_id(); auto info = FieldDataInfo(field_data.field_id(), N, "/tmp/a"); auto field_meta = fields.at(FieldId(field_id)); info.channel->push( CreateFieldDataFromDataArray(N, &field_data, field_meta)); info.channel->close(); seg->LoadFieldData(FieldId(field_id), info); } enum ExprType { UnaryRangeExpr = 0, TermExprImpl = 1, CompareExpr = 2, LogicalUnaryExpr = 3, BinaryRangeExpr = 4, LogicalBinaryExpr = 5, BinaryArithOpEvalRangeExpr = 6, }; auto build_expr = [&](enum ExprType test_type, int n) -> expr::TypedExprPtr { switch (test_type) { case UnaryRangeExpr: { proto::plan::GenericValue val; val.set_int64_val(10); return std::make_shared( expr::ColumnInfo(int64_fid, DataType::INT64), proto::plan::OpType::GreaterThan, val); } case TermExprImpl: { std::vector retrieve_ints; // for (int i = 0; i < n; ++i) { // retrieve_ints.push_back("xxxxxx" + std::to_string(i % 10)); // } // return std::make_shared>( // ColumnInfo(str1_fid, DataType::VARCHAR), // retrieve_ints, // proto::plan::GenericValue::ValCase::kStringVal); for (int i = 0; i < n; ++i) { proto::plan::GenericValue val; val.set_float_val(i); retrieve_ints.push_back(val); } return std::make_shared( expr::ColumnInfo(double_fid, DataType::DOUBLE), retrieve_ints); } case CompareExpr: { auto compare_expr = std::make_shared(int8_fid, int8_1_fid, DataType::INT8, DataType::INT8, OpType::LessThan); return compare_expr; } case BinaryRangeExpr: { proto::plan::GenericValue lower; lower.set_int64_val(10); proto::plan::GenericValue upper; upper.set_int64_val(45); return std::make_shared( expr::ColumnInfo(int64_fid, DataType::INT64), lower, upper, true, true); } case LogicalUnaryExpr: { proto::plan::GenericValue val; val.set_int64_val(10); auto child_expr = std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, val); return std::make_shared( expr::LogicalUnaryExpr::OpType::LogicalNot, child_expr); } case LogicalBinaryExpr: { proto::plan::GenericValue val; val.set_int64_val(10); auto child1_expr = std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, val); auto child2_expr = std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::NotEqual, val); ; return std::make_shared( expr::LogicalBinaryExpr::OpType::And, child1_expr, child2_expr); } case BinaryArithOpEvalRangeExpr: { proto::plan::GenericValue val; val.set_int64_val(100); proto::plan::GenericValue right; right.set_int64_val(10); return std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::Equal, proto::plan::ArithOpType::Add, val, right); } default: { proto::plan::GenericValue val; val.set_int64_val(10); return std::make_shared( expr::ColumnInfo(int8_fid, DataType::INT8), proto::plan::OpType::GreaterThan, val); } } }; auto test_case = [&](int n) { auto expr = build_expr(UnaryRangeExpr, n); query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); std::cout << "start test" << std::endl; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg.get(), N, final); std::cout << n << "cost: " << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << "us" << std::endl; }; test_case(3); test_case(10); test_case(20); test_case(30); test_case(50); test_case(100); test_case(200); // test_case(500); } TEST(Expr, TestCompareWithScalarIndexMaris) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector< std::tuple>> testcases = { {R"(LessThan)", [](std::string a, std::string b) { return a.compare(b) < 0; }}, {R"(LessEqual)", [](std::string a, std::string b) { return a.compare(b) <= 0; }}, {R"(GreaterThan)", [](std::string a, std::string b) { return a.compare(b) > 0; }}, {R"(GreaterEqual)", [](std::string a, std::string b) { return a.compare(b) >= 0; }}, {R"(Equal)", [](std::string a, std::string b) { return a.compare(b) == 0; }}, {R"(NotEqual)", [](std::string a, std::string b) { return a.compare(b) != 0; }}, }; const char* serialized_expr_plan = R"(vector_anns: < field_id: %1% predicates: < compare_expr: < left_column_info: < field_id: %3% data_type: VarChar > right_column_info: < field_id: %4% data_type: VarChar > op: %2% > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto str1_fid = schema->AddDebugField("string1", DataType::VARCHAR); auto str2_fid = schema->AddDebugField("string2", DataType::VARCHAR); schema->set_primary_field_id(str1_fid); auto seg = CreateSealedSegment(schema); int N = 1000; auto raw_data = DataGen(schema, N); segcore::LoadIndexInfo load_index_info; // load index for int32 field auto str1_col = raw_data.get_col(str1_fid); GenScalarIndexing(N, str1_col.data()); auto str1_index = milvus::index::CreateScalarIndexSort(); str1_index->Build(N, str1_col.data()); load_index_info.field_id = str1_fid.get(); load_index_info.field_type = DataType::VARCHAR; load_index_info.index = std::move(str1_index); seg->LoadIndex(load_index_info); // load index for int64 field auto str2_col = raw_data.get_col(str2_fid); GenScalarIndexing(N, str2_col.data()); auto str2_index = milvus::index::CreateScalarIndexSort(); str2_index->Build(N, str2_col.data()); load_index_info.field_id = str2_fid.get(); load_index_info.field_type = DataType::VARCHAR; load_index_info.index = std::move(str2_index); seg->LoadIndex(load_index_info); query::ExecPlanNodeVisitor visitor(*seg, MAX_TIMESTAMP); for (auto [clause, ref_func] : testcases) { auto dsl_string = boost::format(serialized_expr_plan) % vec_fid.get() % clause % str1_fid.get() % str2_fid.get(); auto binary_plan = translate_text_plan_to_binary_plan(dsl_string.str().data()); auto plan = CreateSearchPlanByExpr( *schema, binary_plan.data(), binary_plan.size()); // std::cout << ShowPlanNodeVisitor().call_child(*plan->plan_node_) << std::endl; BitsetType final; visitor.ExecuteExprNode( plan->plan_node_->filter_plannode_.value(), seg.get(), N, final); EXPECT_EQ(final.size(), N); for (int i = 0; i < N; ++i) { auto ans = final[i]; auto val1 = str1_col[i]; auto val2 = str2_col[i]; auto ref = ref_func(val1, val2); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << boost::format("[%1%, %2%]") % val1 % val2; } } } TEST(Expr, TestBinaryArithOpEvalRange) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector, DataType>> testcases = { // Add test cases for BinaryArithOpEvalRangeExpr EQ of various data types {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 101 data_type: Int8 > arith_op: Add right_operand: < int64_val: 4 > op: Equal value: < int64_val: 8 > >)", [](int8_t v) { return (v + 4) == 8; }, DataType::INT8}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 102 data_type: Int16 > arith_op: Sub right_operand: < int64_val: 500 > op: Equal value: < int64_val: 1500 > >)", [](int16_t v) { return (v - 500) == 1500; }, DataType::INT16}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 103 data_type: Int32 > arith_op: Mul right_operand: < int64_val: 2 > op: Equal value: < int64_val: 4000 > >)", [](int32_t v) { return (v * 2) == 4000; }, DataType::INT32}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 104 data_type: Int64 > arith_op: Div right_operand: < int64_val: 2 > op: Equal value: < int64_val: 1000 > >)", [](int64_t v) { return (v / 2) == 1000; }, DataType::INT64}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 103 data_type: Int32 > arith_op: Mod right_operand: < int64_val: 100 > op: Equal value: < int64_val: 0 > >)", [](int32_t v) { return (v % 100) == 0; }, DataType::INT32}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 105 data_type: Float > arith_op: Add right_operand: < float_val: 500 > op: Equal value: < float_val: 2500 > >)", [](float v) { return (v + 500) == 2500; }, DataType::FLOAT}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 106 data_type: Double > arith_op: Add right_operand: < float_val: 500 > op: Equal value: < float_val: 2500 > >)", [](double v) { return (v + 500) == 2500; }, DataType::DOUBLE}, // Add test cases for BinaryArithOpEvalRangeExpr NE of various data types {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 105 data_type: Float > arith_op: Add right_operand: < float_val: 500 > op: NotEqual value: < float_val: 2500 > >)", [](float v) { return (v + 500) != 2500; }, DataType::FLOAT}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 106 data_type: Double > arith_op: Sub right_operand: < float_val: 500 > op: NotEqual value: < float_val: 2500 > >)", [](double v) { return (v - 500) != 2500; }, DataType::DOUBLE}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 101 data_type: Int8 > arith_op: Mul right_operand: < int64_val: 2 > op: NotEqual value: < int64_val: 2 > >)", [](int8_t v) { return (v * 2) != 2; }, DataType::INT8}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 102 data_type: Int16 > arith_op: Div right_operand: < int64_val: 2 > op: NotEqual value: < int64_val: 1000 > >)", [](int16_t v) { return (v / 2) != 1000; }, DataType::INT16}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 103 data_type: Int32 > arith_op: Mod right_operand: < int64_val: 100 > op: NotEqual value: < int64_val: 0 > >)", [](int32_t v) { return (v % 100) != 0; }, DataType::INT32}, {R"(binary_arith_op_eval_range_expr: < column_info: < field_id: 104 data_type: Int64 > arith_op: Mod right_operand: < int64_val: 500 > op: NotEqual value: < int64_val: 2500 > >)", [](int64_t v) { return (v + 500) != 2500; }, DataType::INT64}, }; // std::string dsl_string_tmp = R"({ // "bool": { // "must": [ // { // "range": { // @@@@@ // } // }, // { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10, // "round_decimal": 3 // } // } // } // ] // } // })"; std::string raw_plan_tmp = R"(vector_anns: < field_id: 100 predicates: < @@@@@ > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i8_fid = schema->AddDebugField("age8", DataType::INT8); auto i16_fid = schema->AddDebugField("age16", DataType::INT16); auto i32_fid = schema->AddDebugField("age32", DataType::INT32); auto i64_fid = schema->AddDebugField("age64", DataType::INT64); auto float_fid = schema->AddDebugField("age_float", DataType::FLOAT); auto double_fid = schema->AddDebugField("age_double", DataType::DOUBLE); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector age8_col; std::vector age16_col; std::vector age32_col; std::vector age64_col; std::vector age_float_col; std::vector age_double_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_age8_col = raw_data.get_col(i8_fid); auto new_age16_col = raw_data.get_col(i16_fid); auto new_age32_col = raw_data.get_col(i32_fid); auto new_age64_col = raw_data.get_col(i64_fid); auto new_age_float_col = raw_data.get_col(float_fid); auto new_age_double_col = raw_data.get_col(double_fid); age8_col.insert( age8_col.end(), new_age8_col.begin(), new_age8_col.end()); age16_col.insert( age16_col.end(), new_age16_col.begin(), new_age16_col.end()); age32_col.insert( age32_col.end(), new_age32_col.begin(), new_age32_col.end()); age64_col.insert( age64_col.end(), new_age64_col.begin(), new_age64_col.end()); age_float_col.insert(age_float_col.end(), new_age_float_col.begin(), new_age_float_col.end()); age_double_col.insert(age_double_col.end(), new_age_double_col.begin(), new_age_double_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto [clause, ref_func, dtype] : testcases) { auto loc = raw_plan_tmp.find("@@@@@"); auto raw_plan = raw_plan_tmp; raw_plan.replace(loc, 5, clause); // if (dtype == DataType::INT8) { // dsl_string.replace(loc, 5, dsl_string_int8); // } else if (dtype == DataType::INT16) { // dsl_string.replace(loc, 5, dsl_string_int16); // } else if (dtype == DataType::INT32) { // dsl_string.replace(loc, 5, dsl_string_int32); // } else if (dtype == DataType::INT64) { // dsl_string.replace(loc, 5, dsl_string_int64); // } else if (dtype == DataType::FLOAT) { // dsl_string.replace(loc, 5, dsl_string_float); // } else if (dtype == DataType::DOUBLE) { // dsl_string.replace(loc, 5, dsl_string_double); // } else { // ASSERT_TRUE(false) << "No test case defined for this data type"; // } // loc = dsl_string.find("@@@@"); // dsl_string.replace(loc, 4, clause); auto plan_str = translate_text_plan_to_binary_plan(raw_plan.c_str()); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (dtype == DataType::INT8) { auto val = age8_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val << std::endl; } else if (dtype == DataType::INT16) { auto val = age16_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT32) { auto val = age32_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT64) { auto val = age64_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::FLOAT) { auto val = age_float_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::DOUBLE) { auto val = age_double_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else { ASSERT_TRUE(false) << "No test case defined for this data type"; } } } } TEST(Expr, TestBinaryArithOpEvalRangeJSON) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; struct Testcase { int64_t right_operand; int64_t value; OpType op; std::vector nested_path; }; std::vector testcases{ {10, 20, OpType::Equal, {"int"}}, {20, 30, OpType::Equal, {"int"}}, {30, 40, OpType::NotEqual, {"int"}}, {40, 50, OpType::NotEqual, {"int"}}, {10, 20, OpType::Equal, {"double"}}, {20, 30, OpType::Equal, {"double"}}, {30, 40, OpType::NotEqual, {"double"}}, {40, 50, OpType::NotEqual, {"double"}}, }; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto testcase : testcases) { auto check = [&](int64_t value) { if (testcase.op == OpType::Equal) { return value + testcase.right_operand == testcase.value; } return value + testcase.right_operand != testcase.value; }; auto pointer = milvus::Json::pointer(testcase.nested_path); proto::plan::GenericValue value; value.set_int64_val(testcase.value); proto::plan::GenericValue right_operand; right_operand.set_int64_val(testcase.right_operand); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), testcase.op, ArithOpType::Add, value, right_operand); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (testcase.nested_path[0] == "int") { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = check(val); ASSERT_EQ(ans, ref) << testcase.value << " " << val; } else { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = check(val); ASSERT_EQ(ans, ref) << testcase.value << " " << val << " " << testcase.op << " " << i; } } } } TEST(Expr, TestBinaryArithOpEvalRangeJSONFloat) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; struct Testcase { double right_operand; double value; OpType op; std::vector nested_path; }; std::vector testcases{ {10, 20, OpType::Equal, {"double"}}, {20, 30, OpType::Equal, {"double"}}, {30, 40, OpType::NotEqual, {"double"}}, {40, 50, OpType::NotEqual, {"double"}}, {10, 20, OpType::Equal, {"int"}}, {20, 30, OpType::Equal, {"int"}}, {30, 40, OpType::NotEqual, {"int"}}, {40, 50, OpType::NotEqual, {"int"}}, }; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); for (auto testcase : testcases) { auto check = [&](double value) { if (testcase.op == OpType::Equal) { return value + testcase.right_operand == testcase.value; } return value + testcase.right_operand != testcase.value; }; auto pointer = milvus::Json::pointer(testcase.nested_path); proto::plan::GenericValue value; value.set_float_val(testcase.value); proto::plan::GenericValue right_operand; right_operand.set_float_val(testcase.right_operand); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), testcase.op, ArithOpType::Add, value, right_operand); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at(pointer) .value(); auto ref = check(val); ASSERT_EQ(ans, ref) << testcase.value << " " << val << " " << testcase.op; } } std::vector array_testcases{ {0, 3, OpType::Equal, {"array"}}, {0, 5, OpType::NotEqual, {"array"}}, }; for (auto testcase : array_testcases) { auto check = [&](int64_t value) { if (testcase.op == OpType::Equal) { return value == testcase.value; } return value != testcase.value; }; auto pointer = milvus::Json::pointer(testcase.nested_path); proto::plan::GenericValue value; value.set_int64_val(testcase.value); proto::plan::GenericValue right_operand; right_operand.set_int64_val(testcase.right_operand); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), testcase.op, ArithOpType::ArrayLength, value, right_operand); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto json = milvus::Json(simdjson::padded_string(json_col[i])); int64_t array_length = 0; auto doc = json.doc(); auto array = doc.at_pointer(pointer).get_array(); if (!array.error()) { array_length = array.count_elements(); } auto ref = check(array_length); ASSERT_EQ(ans, ref) << testcase.value << " " << array_length; } } } TEST(Expr, TestBinaryArithOpEvalRangeWithScalarSortIndex) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector, DataType>> testcases = { // Add test cases for BinaryArithOpEvalRangeExpr EQ of various data types {R"(arith_op: Add right_operand: < int64_val: 4 > op: Equal value: < int64_val: 8 >)", [](int8_t v) { return (v + 4) == 8; }, DataType::INT8}, {R"(arith_op: Sub right_operand: < int64_val: 500 > op: Equal value: < int64_val: 1500 >)", [](int16_t v) { return (v - 500) == 1500; }, DataType::INT16}, {R"(arith_op: Mul right_operand: < int64_val: 2 > op: Equal value: < int64_val: 4000 >)", [](int32_t v) { return (v * 2) == 4000; }, DataType::INT32}, {R"(arith_op: Div right_operand: < int64_val: 2 > op: Equal value: < int64_val: 1000 >)", [](int64_t v) { return (v / 2) == 1000; }, DataType::INT64}, {R"(arith_op: Mod right_operand: < int64_val: 100 > op: Equal value: < int64_val: 0 >)", [](int32_t v) { return (v % 100) == 0; }, DataType::INT32}, {R"(arith_op: Add right_operand: < float_val: 500 > op: Equal value: < float_val: 2500 >)", [](float v) { return (v + 500) == 2500; }, DataType::FLOAT}, {R"(arith_op: Add right_operand: < float_val: 500 > op: Equal value: < float_val: 2500 >)", [](double v) { return (v + 500) == 2500; }, DataType::DOUBLE}, {R"(arith_op: Add right_operand: < float_val: 500 > op: NotEqual value: < float_val: 2000 >)", [](float v) { return (v + 500) != 2000; }, DataType::FLOAT}, {R"(arith_op: Sub right_operand: < float_val: 500 > op: NotEqual value: < float_val: 2500 >)", [](double v) { return (v - 500) != 2000; }, DataType::DOUBLE}, {R"(arith_op: Mul right_operand: < int64_val: 2 > op: NotEqual value: < int64_val: 2 >)", [](int8_t v) { return (v * 2) != 2; }, DataType::INT8}, {R"(arith_op: Div right_operand: < int64_val: 2 > op: NotEqual value: < int64_val: 2000 >)", [](int16_t v) { return (v / 2) != 2000; }, DataType::INT16}, {R"(arith_op: Mod right_operand: < int64_val: 100 > op: NotEqual value: < int64_val: 1 >)", [](int32_t v) { return (v % 100) != 1; }, DataType::INT32}, {R"(arith_op: Add right_operand: < int64_val: 500 > op: NotEqual value: < int64_val: 2000 >)", [](int64_t v) { return (v + 500) != 2000; }, DataType::INT64}, }; std::string serialized_expr_plan = R"(vector_anns: < field_id: %1% predicates: < binary_arith_op_eval_range_expr: < @@@@@ > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; std::string arith_expr = R"( column_info: < field_id: %2% data_type: %3% > @@@@)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i8_fid = schema->AddDebugField("age8", DataType::INT8); auto i16_fid = schema->AddDebugField("age16", DataType::INT16); auto i32_fid = schema->AddDebugField("age32", DataType::INT32); auto i64_fid = schema->AddDebugField("age64", DataType::INT64); auto float_fid = schema->AddDebugField("age_float", DataType::FLOAT); auto double_fid = schema->AddDebugField("age_double", DataType::DOUBLE); schema->set_primary_field_id(i64_fid); auto seg = CreateSealedSegment(schema); int N = 1000; auto raw_data = DataGen(schema, N); segcore::LoadIndexInfo load_index_info; // load index for int8 field auto age8_col = raw_data.get_col(i8_fid); age8_col[0] = 4; GenScalarIndexing(N, age8_col.data()); auto age8_index = milvus::index::CreateScalarIndexSort(); age8_index->Build(N, age8_col.data()); load_index_info.field_id = i8_fid.get(); load_index_info.field_type = DataType::INT8; load_index_info.index = std::move(age8_index); seg->LoadIndex(load_index_info); // load index for 16 field auto age16_col = raw_data.get_col(i16_fid); age16_col[0] = 2000; GenScalarIndexing(N, age16_col.data()); auto age16_index = milvus::index::CreateScalarIndexSort(); age16_index->Build(N, age16_col.data()); load_index_info.field_id = i16_fid.get(); load_index_info.field_type = DataType::INT16; load_index_info.index = std::move(age16_index); seg->LoadIndex(load_index_info); // load index for int32 field auto age32_col = raw_data.get_col(i32_fid); age32_col[0] = 2000; GenScalarIndexing(N, age32_col.data()); auto age32_index = milvus::index::CreateScalarIndexSort(); age32_index->Build(N, age32_col.data()); load_index_info.field_id = i32_fid.get(); load_index_info.field_type = DataType::INT32; load_index_info.index = std::move(age32_index); seg->LoadIndex(load_index_info); // load index for int64 field auto age64_col = raw_data.get_col(i64_fid); age64_col[0] = 2000; GenScalarIndexing(N, age64_col.data()); auto age64_index = milvus::index::CreateScalarIndexSort(); age64_index->Build(N, age64_col.data()); load_index_info.field_id = i64_fid.get(); load_index_info.field_type = DataType::INT64; load_index_info.index = std::move(age64_index); seg->LoadIndex(load_index_info); // load index for float field auto age_float_col = raw_data.get_col(float_fid); age_float_col[0] = 2000; GenScalarIndexing(N, age_float_col.data()); auto age_float_index = milvus::index::CreateScalarIndexSort(); age_float_index->Build(N, age_float_col.data()); load_index_info.field_id = float_fid.get(); load_index_info.field_type = DataType::FLOAT; load_index_info.index = std::move(age_float_index); seg->LoadIndex(load_index_info); // load index for double field auto age_double_col = raw_data.get_col(double_fid); age_double_col[0] = 2000; GenScalarIndexing(N, age_double_col.data()); auto age_double_index = milvus::index::CreateScalarIndexSort(); age_double_index->Build(N, age_double_col.data()); load_index_info.field_id = double_fid.get(); load_index_info.field_type = DataType::FLOAT; load_index_info.index = std::move(age_double_index); seg->LoadIndex(load_index_info); auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); int offset = 0; for (auto [clause, ref_func, dtype] : testcases) { auto loc = serialized_expr_plan.find("@@@@@"); auto expr_plan = serialized_expr_plan; expr_plan.replace(loc, 5, arith_expr); loc = expr_plan.find("@@@@"); expr_plan.replace(loc, 4, clause); boost::format expr; if (dtype == DataType::INT8) { expr = boost::format(expr_plan) % vec_fid.get() % i8_fid.get() % proto::schema::DataType_Name(int(DataType::INT8)); } else if (dtype == DataType::INT16) { expr = boost::format(expr_plan) % vec_fid.get() % i16_fid.get() % proto::schema::DataType_Name(int(DataType::INT16)); } else if (dtype == DataType::INT32) { expr = boost::format(expr_plan) % vec_fid.get() % i32_fid.get() % proto::schema::DataType_Name(int(DataType::INT32)); } else if (dtype == DataType::INT64) { expr = boost::format(expr_plan) % vec_fid.get() % i64_fid.get() % proto::schema::DataType_Name(int(DataType::INT64)); } else if (dtype == DataType::FLOAT) { expr = boost::format(expr_plan) % vec_fid.get() % float_fid.get() % proto::schema::DataType_Name(int(DataType::FLOAT)); } else if (dtype == DataType::DOUBLE) { expr = boost::format(expr_plan) % vec_fid.get() % double_fid.get() % proto::schema::DataType_Name(int(DataType::DOUBLE)); } else { ASSERT_TRUE(false) << "No test case defined for this data type"; } auto binary_plan = translate_text_plan_to_binary_plan(expr.str().data()); auto plan = CreateSearchPlanByExpr( *schema, binary_plan.data(), binary_plan.size()); BitsetType final; visitor.ExecuteExprNode( plan->plan_node_->filter_plannode_.value(), seg_promote, N, final); EXPECT_EQ(final.size(), N); for (int i = 0; i < N; ++i) { auto ans = final[i]; if (dtype == DataType::INT8) { auto val = age8_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT16) { auto val = age16_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT32) { auto val = age32_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT64) { auto val = age64_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::FLOAT) { auto val = age_float_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::DOUBLE) { auto val = age_double_col[i]; auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else { ASSERT_TRUE(false) << "No test case defined for this data type"; } } } } TEST(Expr, TestUnaryRangeWithJSON) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector< std::tuple)>, DataType>> testcases = { {R"(op: Equal value: < bool_val: true >)", [](std::variant v) { return std::get(v); }, DataType::BOOL}, {R"(op: LessEqual value: < int64_val: 1500 >)", [](std::variant v) { return std::get(v) < 1500; }, DataType::INT64}, {R"(op: LessEqual value: < float_val: 4000 >)", [](std::variant v) { return std::get(v) <= 4000; }, DataType::DOUBLE}, {R"(op: GreaterThan value: < float_val: 1000 >)", [](std::variant v) { return std::get(v) > 1000; }, DataType::DOUBLE}, {R"(op: GreaterEqual value: < int64_val: 0 >)", [](std::variant v) { return std::get(v) >= 0; }, DataType::INT64}, {R"(op: NotEqual value: < bool_val: true >)", [](std::variant v) { return !std::get(v); }, DataType::BOOL}, {R"(op: Equal value: < string_val: "test" >)", [](std::variant v) { return std::get(v) == "test"; }, DataType::STRING}, }; std::string serialized_expr_plan = R"(vector_anns: < field_id: %1% predicates: < unary_range_expr: < @@@@@ > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; std::string arith_expr = R"( column_info: < field_id: %2% data_type: %3% nested_path:"%4%" > @@@@)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i64_fid = schema->AddDebugField("age64", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); int offset = 0; for (auto [clause, ref_func, dtype] : testcases) { auto loc = serialized_expr_plan.find("@@@@@"); auto expr_plan = serialized_expr_plan; expr_plan.replace(loc, 5, arith_expr); loc = expr_plan.find("@@@@"); expr_plan.replace(loc, 4, clause); boost::format expr; switch (dtype) { case DataType::BOOL: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "bool"; break; } case DataType::INT64: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "int"; break; } case DataType::DOUBLE: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "double"; break; } case DataType::STRING: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "string"; break; } default: { ASSERT_TRUE(false) << "No test case defined for this data type"; } } auto unary_plan = translate_text_plan_to_binary_plan(expr.str().data()); auto plan = CreateSearchPlanByExpr( *schema, unary_plan.data(), unary_plan.size()); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (dtype == DataType::BOOL) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/bool") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT64) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/int") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::DOUBLE) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/double") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::STRING) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/string") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else { ASSERT_TRUE(false) << "No test case defined for this data type"; } } } } TEST(Expr, TestTermWithJSON) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector< std::tuple)>, DataType>> testcases = { {R"(values: )", [](std::variant v) { std::unordered_set term_set; term_set = {true, false}; return term_set.find(std::get(v)) != term_set.end(); }, DataType::BOOL}, {R"(values: , values: , values: )", [](std::variant v) { std::unordered_set term_set; term_set = {1500, 2048, 3216}; return term_set.find(std::get(v)) != term_set.end(); }, DataType::INT64}, {R"(values: , values: , values: )", [](std::variant v) { std::unordered_set term_set; term_set = {1500.0, 4000, 235.14}; return term_set.find(std::get(v)) != term_set.end(); }, DataType::DOUBLE}, {R"(values: , values: , values: )", [](std::variant v) { std::unordered_set term_set; term_set = {"aaa", "abc", "235.14"}; return term_set.find(std::get(v)) != term_set.end(); }, DataType::STRING}, {R"()", [](std::variant v) { return false; }, DataType::INT64}, }; std::string serialized_expr_plan = R"(vector_anns: < field_id: %1% predicates: < term_expr: < @@@@@ > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; std::string arith_expr = R"( column_info: < field_id: %2% data_type: %3% nested_path:"%4%" > @@@@)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i64_fid = schema->AddDebugField("age64", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); int offset = 0; for (auto [clause, ref_func, dtype] : testcases) { auto loc = serialized_expr_plan.find("@@@@@"); auto expr_plan = serialized_expr_plan; expr_plan.replace(loc, 5, arith_expr); loc = expr_plan.find("@@@@"); expr_plan.replace(loc, 4, clause); boost::format expr; switch (dtype) { case DataType::BOOL: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "bool"; break; } case DataType::INT64: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "int"; break; } case DataType::DOUBLE: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "double"; break; } case DataType::STRING: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "string"; break; } default: { ASSERT_TRUE(false) << "No test case defined for this data type"; } } auto unary_plan = translate_text_plan_to_binary_plan(expr.str().data()); auto plan = CreateSearchPlanByExpr( *schema, unary_plan.data(), unary_plan.size()); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (dtype == DataType::BOOL) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/bool") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT64) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/int") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::DOUBLE) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/double") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::STRING) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .template at("/string") .value(); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else { ASSERT_TRUE(false) << "No test case defined for this data type"; } } } } TEST(Expr, TestExistsWithJSON) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector, DataType>> testcases = { {R"()", [](bool v) { return v; }, DataType::BOOL}, {R"()", [](bool v) { return v; }, DataType::INT64}, {R"()", [](bool v) { return v; }, DataType::STRING}, {R"()", [](bool v) { return v; }, DataType::VARCHAR}, {R"()", [](bool v) { return v; }, DataType::DOUBLE}, }; std::string serialized_expr_plan = R"(vector_anns: < field_id: %1% predicates: < exists_expr: < @@@@@ > > query_info: < topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag: "$0" >)"; std::string arith_expr = R"( info: < field_id: %2% data_type: %3% nested_path:"%4%" > @@@@)"; auto schema = std::make_shared(); auto vec_fid = schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); auto i64_fid = schema->AddDebugField("age64", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGen(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); int offset = 0; for (auto [clause, ref_func, dtype] : testcases) { auto loc = serialized_expr_plan.find("@@@@@"); auto expr_plan = serialized_expr_plan; expr_plan.replace(loc, 5, arith_expr); loc = expr_plan.find("@@@@"); expr_plan.replace(loc, 4, clause); boost::format expr; switch (dtype) { case DataType::BOOL: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "bool"; break; } case DataType::INT64: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "int"; break; } case DataType::DOUBLE: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "double"; break; } case DataType::STRING: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "string"; break; } case DataType::VARCHAR: { expr = boost::format(expr_plan) % vec_fid.get() % json_fid.get() % proto::schema::DataType_Name(int(DataType::JSON)) % "varchar"; break; } default: { ASSERT_TRUE(false) << "No test case defined for this data type"; } } auto unary_plan = translate_text_plan_to_binary_plan(expr.str().data()); auto plan = CreateSearchPlanByExpr( *schema, unary_plan.data(), unary_plan.size()); BitsetType final; visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(), seg_promote, N * num_iters, final); EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; if (dtype == DataType::BOOL) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .exist("/bool"); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::INT64) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .exist("/int"); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::DOUBLE) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .exist("/double"); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::STRING) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .exist("/string"); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else if (dtype == DataType::VARCHAR) { auto val = milvus::Json(simdjson::padded_string(json_col[i])) .exist("/varchar"); auto ref = ref_func(val); ASSERT_EQ(ans, ref) << clause << "@" << i << "!!" << val; } else { ASSERT_TRUE(false) << "No test case defined for this data type"; } } } } template struct Testcase { std::vector term; std::vector nested_path; bool res; }; TEST(Expr, TestTermInFieldJson) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGenForJsonArray(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); std::vector> bool_testcases{{{true}, {"bool"}}, {{false}, {"bool"}}}; for (auto testcase : bool_testcases) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto v : testcase.term) { proto::plan::GenericValue val; val.set_bool_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), values, true); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); // std::cout << "cost" // << std::chrono::duration_cast( // std::chrono::steady_clock::now() - start) // .count() // << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> double_testcases{ {{1.123}, {"double"}}, {{10.34}, {"double"}}, {{100.234}, {"double"}}, {{1000.4546}, {"double"}}, }; for (auto testcase : double_testcases) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto v : testcase.term) { proto::plan::GenericValue val; val.set_float_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), values, true); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> testcases{ {{1}, {"int"}}, {{10}, {"int"}}, {{100}, {"int"}}, {{1000}, {"int"}}, }; for (auto testcase : testcases) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_int64_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), values, true); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> testcases_string = { {{"1sads"}, {"string"}}, {{"10dsf"}, {"string"}}, {{"100"}, {"string"}}, {{"100ddfdsssdfdsfsd0"}, {"string"}}, }; for (auto testcase : testcases_string) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_string_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), values, true); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } } TEST(Expr, PraseJsonContainsExpr) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; std::vector raw_plans{ R"(vector_anns:< field_id:100 predicates:< json_contains_expr:< column_info:< field_id:101 data_type:JSON nested_path:"A" > elements: elements: elements: op:ContainsAny elements_same_type:true > > query_info:< topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag:"$0" >)", R"(vector_anns:< field_id:100 predicates:< json_contains_expr:< column_info:< field_id:101 data_type:JSON nested_path:"A" > elements: elements: elements: op:ContainsAll elements_same_type:true > > query_info:< topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag:"$0" >)", R"(vector_anns:< field_id:100 predicates:< json_contains_expr:< column_info:< field_id:101 data_type:JSON nested_path:"A" > elements: elements: elements: op:ContainsAll elements_same_type:true > > query_info:< topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag:"$0" >)", R"(vector_anns:< field_id:100 predicates:< json_contains_expr:< column_info:< field_id:101 data_type:JSON nested_path:"A" > elements: elements: elements: op:ContainsAll elements_same_type:true > > query_info:< topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag:"$0" >)", R"(vector_anns:< field_id:100 predicates:< json_contains_expr:< column_info:< field_id:101 data_type:JSON nested_path:"A" > elements: elements: elements: op:ContainsAll elements_same_type:true > > query_info:< topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag:"$0" >)", R"(vector_anns:< field_id:100 predicates:< json_contains_expr:< column_info:< field_id:101 data_type:JSON nested_path:"A" > elements: elements: elements: elements: op:ContainsAll > > query_info:< topk: 10 round_decimal: 3 metric_type: "L2" search_params: "{\"nprobe\": 10}" > placeholder_tag:"$0" >)", }; for (auto& raw_plan : raw_plans) { auto plan_str = translate_text_plan_to_binary_plan(raw_plan); auto schema = std::make_shared(); schema->AddDebugField( "fakevec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2); schema->AddDebugField("json", DataType::JSON); auto plan = CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size()); } } TEST(Expr, TestJsonContainsAny) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGenForJsonArray(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); std::vector> bool_testcases{{{true}, {"bool"}}, {{false}, {"bool"}}}; for (auto testcase : bool_testcases) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto v : testcase.term) { proto::plan::GenericValue val; val.set_bool_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> double_testcases{ {{1.123}, {"double"}}, {{10.34}, {"double"}}, {{100.234}, {"double"}}, {{1000.4546}, {"double"}}, }; for (auto testcase : double_testcases) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_float_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> testcases{ {{1}, {"int"}}, {{10}, {"int"}}, {{100}, {"int"}}, {{1000}, {"int"}}, }; for (auto testcase : testcases) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_int64_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> testcases_string = { {{"1sads"}, {"string"}}, {{"10dsf"}, {"string"}}, {{"100"}, {"string"}}, {{"100ddfdsssdfdsfsd0"}, {"string"}}, }; for (auto testcase : testcases_string) { auto check = [&](const std::vector& values) { return std::find(values.begin(), values.end(), testcase.term[0]) != values.end(); }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_string_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } } TEST(Expr, TestJsonContainsAll) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGenForJsonArray(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); std::vector> bool_testcases{{{true, true}, {"bool"}}, {{false, false}, {"bool"}}}; for (auto testcase : bool_testcases) { auto check = [&](const std::vector& values) { for (auto const& e : testcase.term) { if (std::find(values.begin(), values.end(), e) == values.end()) { return false; } } return true; }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto v : testcase.term) { proto::plan::GenericValue val; val.set_bool_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> double_testcases{ {{1.123, 10.34}, {"double"}}, {{10.34, 100.234}, {"double"}}, {{100.234, 1000.4546}, {"double"}}, {{1000.4546, 1.123}, {"double"}}, {{1000.4546, 10.34}, {"double"}}, {{1.123, 100.234}, {"double"}}, }; for (auto testcase : double_testcases) { auto check = [&](const std::vector& values) { for (auto const& e : testcase.term) { if (std::find(values.begin(), values.end(), e) == values.end()) { return false; } } return true; }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_float_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> testcases{ {{1, 10}, {"int"}}, {{10, 100}, {"int"}}, {{100, 1000}, {"int"}}, {{1000, 10}, {"int"}}, {{2, 4, 6, 8, 10}, {"int"}}, {{1, 2, 3, 4, 5}, {"int"}}, }; for (auto testcase : testcases) { auto check = [&](const std::vector& values) { for (auto const& e : testcase.term) { if (std::find(values.begin(), values.end(), e) == values.end()) { return false; } } return true; }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_int64_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } std::vector> testcases_string = { {{"1sads", "10dsf"}, {"string"}}, {{"10dsf", "100"}, {"string"}}, {{"100", "10dsf", "1sads"}, {"string"}}, {{"100ddfdsssdfdsfsd0", "100"}, {"string"}}, }; for (auto testcase : testcases_string) { auto check = [&](const std::vector& values) { for (auto const& e : testcase.term) { if (std::find(values.begin(), values.end(), e) == values.end()) { return false; } } return true; }; auto pointer = milvus::Json::pointer(testcase.nested_path); std::vector values; for (auto& v : testcase.term) { proto::plan::GenericValue val; val.set_string_val(v); values.push_back(val); } auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, values); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; auto array = milvus::Json(simdjson::padded_string(json_col[i])) .array_at(pointer); std::vector res; for (const auto& element : array) { res.push_back(element.template get()); } ASSERT_EQ(ans, check(res)); } } } TEST(Expr, TestJsonContainsArray) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGenForJsonArray(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); proto::plan::GenericValue generic_a; auto* a = generic_a.mutable_array_val(); a->set_same_type(false); for (int i = 0; i < 4; ++i) { if (i % 4 == 0) { proto::plan::GenericValue int_val; int_val.set_int64_val(int64_t(i)); a->add_array()->CopyFrom(int_val); } else if ((i - 1) % 4 == 0) { proto::plan::GenericValue bool_val; bool_val.set_bool_val(bool(i)); a->add_array()->CopyFrom(bool_val); } else if ((i - 2) % 4 == 0) { proto::plan::GenericValue float_val; float_val.set_float_val(double(i)); a->add_array()->CopyFrom(float_val); } else if ((i - 3) % 4 == 0) { proto::plan::GenericValue string_val; string_val.set_string_val(std::to_string(i)); a->add_array()->CopyFrom(string_val); } } proto::plan::GenericValue generic_b; auto* b = generic_b.mutable_array_val(); b->set_same_type(true); proto::plan::GenericValue int_val1; int_val1.set_int64_val(int64_t(1)); b->add_array()->CopyFrom(int_val1); proto::plan::GenericValue int_val2; int_val2.set_int64_val(int64_t(2)); b->add_array()->CopyFrom(int_val2); proto::plan::GenericValue int_val3; int_val3.set_int64_val(int64_t(3)); b->add_array()->CopyFrom(int_val3); std::vector> diff_testcases{ {{generic_a}, {"string"}}, {{generic_b}, {"array"}}}; for (auto& testcase : diff_testcases) { auto check = [&](const std::vector& values, int i) { if (testcase.nested_path[0] == "array" && (i == 1 || i == N + 1)) { return true; } return false; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, testcase.term); auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); BitsetType final; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; std::vector res; ASSERT_EQ(ans, check(res, i)); } } for (auto& testcase : diff_testcases) { auto check = [&](const std::vector& values, int i) { if (testcase.nested_path[0] == "array" && (i == 1 || i == N + 1)) { return true; } return false; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, testcase.term); auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); BitsetType final; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; std::vector res; ASSERT_EQ(ans, check(res, i)); } } proto::plan::GenericValue g_sub_arr1; auto* sub_arr1 = g_sub_arr1.mutable_array_val(); sub_arr1->set_same_type(true); proto::plan::GenericValue int_val11; int_val11.set_int64_val(int64_t(1)); sub_arr1->add_array()->CopyFrom(int_val11); proto::plan::GenericValue int_val12; int_val12.set_int64_val(int64_t(2)); sub_arr1->add_array()->CopyFrom(int_val12); proto::plan::GenericValue g_sub_arr2; auto* sub_arr2 = g_sub_arr2.mutable_array_val(); sub_arr2->set_same_type(true); proto::plan::GenericValue int_val21; int_val21.set_int64_val(int64_t(3)); sub_arr2->add_array()->CopyFrom(int_val21); proto::plan::GenericValue int_val22; int_val22.set_int64_val(int64_t(4)); sub_arr2->add_array()->CopyFrom(int_val22); std::vector> diff_testcases2{ {{g_sub_arr1, g_sub_arr2}, {"array2"}}}; for (auto& testcase : diff_testcases2) { auto check = [&]() { return true; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, testcase.term); auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); BitsetType final; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; ASSERT_EQ(ans, check()); } } for (auto& testcase : diff_testcases2) { auto check = [&](const std::vector& values, int i) { return true; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, testcase.term); auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); BitsetType final; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; std::vector res; ASSERT_EQ(ans, check(res, i)); } } proto::plan::GenericValue g_sub_arr3; auto* sub_arr3 = g_sub_arr3.mutable_array_val(); sub_arr3->set_same_type(true); proto::plan::GenericValue int_val31; int_val31.set_int64_val(int64_t(5)); sub_arr3->add_array()->CopyFrom(int_val31); proto::plan::GenericValue int_val32; int_val32.set_int64_val(int64_t(6)); sub_arr3->add_array()->CopyFrom(int_val32); proto::plan::GenericValue g_sub_arr4; auto* sub_arr4 = g_sub_arr4.mutable_array_val(); sub_arr4->set_same_type(true); proto::plan::GenericValue int_val41; int_val41.set_int64_val(int64_t(7)); sub_arr4->add_array()->CopyFrom(int_val41); proto::plan::GenericValue int_val42; int_val42.set_int64_val(int64_t(8)); sub_arr4->add_array()->CopyFrom(int_val42); std::vector> diff_testcases3{ {{g_sub_arr3, g_sub_arr4}, {"array2"}}}; for (auto& testcase : diff_testcases3) { auto check = [&](const std::vector& values, int i) { return false; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, true, testcase.term); auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); BitsetType final; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; std::vector res; ASSERT_EQ(ans, check(res, i)); } } for (auto& testcase : diff_testcases3) { auto check = [&](const std::vector& values, int i) { return false; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, true, testcase.term); auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); BitsetType final; auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; std::vector res; ASSERT_EQ(ans, check(res, i)); } } } milvus::proto::plan::GenericValue generatedArrayWithFourDiffType(int64_t int_val, double float_val, bool bool_val, std::string string_val) { using namespace milvus; proto::plan::GenericValue value; proto::plan::Array diff_type_array; diff_type_array.set_same_type(false); proto::plan::GenericValue int_value; int_value.set_int64_val(int_val); diff_type_array.add_array()->CopyFrom(int_value); proto::plan::GenericValue float_value; float_value.set_float_val(float_val); diff_type_array.add_array()->CopyFrom(float_value); proto::plan::GenericValue bool_value; bool_value.set_bool_val(bool_val); diff_type_array.add_array()->CopyFrom(bool_value); proto::plan::GenericValue string_value; string_value.set_string_val(string_val); diff_type_array.add_array()->CopyFrom(string_value); value.mutable_array_val()->CopyFrom(diff_type_array); return value; } TEST(Expr, TestJsonContainsDiffTypeArray) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGenForJsonArray(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); proto::plan::GenericValue int_value; int_value.set_int64_val(1); auto diff_type_array1 = generatedArrayWithFourDiffType(1, 2.2, false, "abc"); auto diff_type_array2 = generatedArrayWithFourDiffType(1, 2.2, false, "def"); auto diff_type_array3 = generatedArrayWithFourDiffType(1, 2.2, true, "abc"); auto diff_type_array4 = generatedArrayWithFourDiffType(1, 3.3, false, "abc"); auto diff_type_array5 = generatedArrayWithFourDiffType(2, 2.2, false, "abc"); std::vector> diff_testcases{ {{diff_type_array1, int_value}, {"array3"}, true}, {{diff_type_array2, int_value}, {"array3"}, false}, {{diff_type_array3, int_value}, {"array3"}, false}, {{diff_type_array4, int_value}, {"array3"}, false}, {{diff_type_array5, int_value}, {"array3"}, false}, }; for (auto& testcase : diff_testcases) { auto check = [&]() { return testcase.res; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, false, testcase.term); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; ASSERT_EQ(ans, check()); } } for (auto& testcase : diff_testcases) { auto check = [&]() { return false; }; auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, false, testcase.term); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; ASSERT_EQ(ans, check()); } } } TEST(Expr, TestJsonContainsDiffType) { using namespace milvus; using namespace milvus::query; using namespace milvus::segcore; auto schema = std::make_shared(); auto i64_fid = schema->AddDebugField("id", DataType::INT64); auto json_fid = schema->AddDebugField("json", DataType::JSON); schema->set_primary_field_id(i64_fid); auto seg = CreateGrowingSegment(schema, empty_index_meta); int N = 1000; std::vector json_col; int num_iters = 1; for (int iter = 0; iter < num_iters; ++iter) { auto raw_data = DataGenForJsonArray(schema, N, iter); auto new_json_col = raw_data.get_col(json_fid); json_col.insert( json_col.end(), new_json_col.begin(), new_json_col.end()); seg->PreInsert(N); seg->Insert(iter * N, N, raw_data.row_ids_.data(), raw_data.timestamps_.data(), raw_data.raw_); } auto seg_promote = dynamic_cast(seg.get()); query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP); proto::plan::GenericValue int_val; int_val.set_int64_val(int64_t(3)); proto::plan::GenericValue bool_val; bool_val.set_bool_val(bool(false)); proto::plan::GenericValue float_val; float_val.set_float_val(double(100.34)); proto::plan::GenericValue string_val; string_val.set_string_val("10dsf"); proto::plan::GenericValue string_val2; string_val2.set_string_val("abc"); proto::plan::GenericValue bool_val2; bool_val2.set_bool_val(bool(true)); proto::plan::GenericValue float_val2; float_val2.set_float_val(double(2.2)); proto::plan::GenericValue int_val2; int_val2.set_int64_val(int64_t(1)); std::vector> diff_testcases{ {{int_val, bool_val, float_val, string_val}, {"diff_type_array"}, false}, {{string_val2, bool_val2, float_val2, int_val2}, {"diff_type_array"}, true}, }; for (auto& testcase : diff_testcases) { auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAny, false, testcase.term); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; ASSERT_EQ(ans, testcase.res); } } for (auto& testcase : diff_testcases) { auto pointer = milvus::Json::pointer(testcase.nested_path); auto expr = std::make_shared( milvus::expr::ColumnInfo( json_fid, DataType::JSON, testcase.nested_path), proto::plan::JSONContainsExpr_JSONOp_ContainsAll, false, testcase.term); BitsetType final; auto plan = std::make_shared(DEFAULT_PLANNODE_ID, expr); auto start = std::chrono::steady_clock::now(); visitor.ExecuteExprNode(plan, seg_promote, N * num_iters, final); std::cout << "cost" << std::chrono::duration_cast( std::chrono::steady_clock::now() - start) .count() << std::endl; EXPECT_EQ(final.size(), N * num_iters); for (int i = 0; i < N * num_iters; ++i) { auto ans = final[i]; ASSERT_EQ(ans, testcase.res); } } }