import threading import numpy as np import pandas as pd import pytest from pymilvus import Index from base.client_base import TestcaseBase from utils.util_log import test_log as log from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel, CheckTasks prefix = "insert" exp_name = "name" exp_schema = "schema" exp_num = "num_entities" exp_primary = "primary" default_schema = cf.gen_default_collection_schema() default_binary_schema = cf.gen_default_binary_collection_schema() default_index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}} default_binary_index_params = {"index_type": "BIN_IVF_FLAT", "metric_type": "JACCARD", "params": {"nlist": 64}} class TestInsertParams(TestcaseBase): """ Test case of Insert interface """ @pytest.fixture(scope="function", params=ct.get_invalid_strs) def get_non_data_type(self, request): if isinstance(request.param, list) or request.param is None: pytest.skip("list and None type is valid data type") yield request.param @pytest.fixture(scope="module", params=ct.get_invalid_strs) def get_invalid_field_name(self, request): if isinstance(request.param, (list, dict)): pytest.skip() yield request.param @pytest.mark.tags(CaseLabel.L0) def test_insert_dataframe_data(self): """ target: test insert DataFrame data method: 1.create 2.insert dataframe data expected: assert num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_list_data(self): """ target: test insert list-like data method: 1.create 2.insert list data expected: assert num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_default_list_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L2) def test_insert_non_data_type(self, get_non_data_type): """ target: test insert with non-dataframe, non-list data method: insert with data (non-dataframe and non-list type) expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) error = {ct.err_code: 0, ct.err_msg: "Data type is not support"} collection_w.insert(data=get_non_data_type, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.parametrize("data", [[], pd.DataFrame()]) def test_insert_empty_data(self, data): """ target: test insert empty data method: insert empty expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) error = {ct.err_code: 0, ct.err_msg: "The data fields number is not match with schema"} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_dataframe_only_columns(self): """ target: test insert with dataframe just columns method: dataframe just have columns expected: num entities is zero """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) columns = [ct.default_int64_field_name, ct.default_float_vec_field_name] df = pd.DataFrame(columns=columns) error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_empty_field_name_dataframe(self): """ target: test insert empty field name df method: dataframe with empty column expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(10) df.rename(columns={ct.default_int64_field_name: ' '}, inplace=True) error = {ct.err_code: 0, ct.err_msg: "The types of schema and data do not match"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_invalid_field_name_dataframe(self, get_invalid_field_name): """ target: test insert with invalid dataframe data method: insert with invalid field name dataframe expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(10) df.rename(columns={ct.default_int64_field_name: get_invalid_field_name}, inplace=True) error = {ct.err_code: 0, ct.err_msg: "The types of schema and data do not match"} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) def test_insert_dataframe_index(self): """ target: test insert dataframe with index method: insert dataframe with index expected: todo """ pass @pytest.mark.tags(CaseLabel.L2) def test_insert_none(self): """ target: test insert None method: data is None expected: return successfully with zero results """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) mutation_res, _ = collection_w.insert(data=None) assert mutation_res.insert_count == 0 assert len(mutation_res.primary_keys) == 0 assert collection_w.is_empty assert collection_w.num_entities == 0 @pytest.mark.tags(CaseLabel.L2) def test_insert_numpy_data(self): """ target: test insert numpy.ndarray data method: 1.create by schema 2.insert data expected: assert num_entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_numpy_data(nb=10) error = {ct.err_code: 0, ct.err_msg: "Data type not support numpy.ndarray"} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_binary_dataframe(self): """ target: test insert binary dataframe method: 1. create by schema 2. insert dataframe expected: assert num_entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_binary_data(self): """ target: test insert list-like binary data method: 1. create by schema 2. insert data expected: assert num_entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) data, _ = cf.gen_default_binary_list_data(ct.default_nb) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L0) def test_insert_single(self): """ target: test insert single method: insert one entity expected: verify num """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_default_list_data(nb=1) mutation_res, _ = collection_w.insert(data=data) assert mutation_res.insert_count == 1 assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == 1 @pytest.mark.tags(CaseLabel.L2) @pytest.mark.xfail(reason="exception not Milvus Exception") def test_insert_dim_not_match(self): """ target: test insert with not match dim method: insert data dim not equal to schema dim expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) dim = 129 df = cf.gen_default_dataframe_data(ct.default_nb, dim=dim) error = {ct.err_code: 1, ct.err_msg: f'Collection field dim is {ct.default_dim}, but entities field dim is {dim}'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.xfail(reason="exception not Milvus Exception") def test_insert_binary_dim_not_match(self): """ target: test insert binary with dim not match method: insert binary data dim not equal to schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name, schema=default_binary_schema) dim = 120 df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb, dim=dim) error = {ct.err_code: 1, ct.err_msg: f'Collection field dim is {ct.default_dim}, but entities field dim is {dim}'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_field_name_not_match(self): """ target: test insert field name not match method: data field name not match schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(10) df.rename(columns={ct.default_float_field_name: "int"}, inplace=True) error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_field_value_not_match(self): """ target: test insert data value not match method: insert data value type not match schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 df = cf.gen_default_dataframe_data(nb) new_float_value = pd.Series(data=[float(i) for i in range(nb)], dtype="float64") df.iloc[:, 1] = new_float_value error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_value_less(self): """ target: test insert value less than other method: int field value less than vec-field value expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = [i for i in range(nb - 1)] float_values = [np.float32(i) for i in range(nb)] float_vec_values = cf.gen_vectors(nb, ct.default_dim) data = [int_values, float_values, float_vec_values] error = {ct.err_code: 0, ct.err_msg: 'Arrays must all be same length.'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_vector_value_less(self): """ target: test insert vector value less than other method: vec field value less than int field expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] float_vec_values = cf.gen_vectors(nb - 1, ct.default_dim) data = [int_values, float_values, float_vec_values] error = {ct.err_code: 0, ct.err_msg: 'Arrays must all be same length.'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_fields_more(self): """ target: test insert with fields more method: field more than schema fields expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(ct.default_nb) new_values = [i for i in range(ct.default_nb)] df.insert(3, 'new', new_values) error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_fields_less(self): """ target: test insert with fields less method: fields less than schema fields expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) df = cf.gen_default_dataframe_data(ct.default_nb) df.drop(ct.default_float_vec_field_name, axis=1, inplace=True) error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_list_order_inconsistent_schema(self): """ target: test insert data fields order inconsistent with schema method: insert list data, data fields order inconsistent with schema expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] float_vec_values = cf.gen_vectors(nb, ct.default_dim) data = [float_values, int_values, float_vec_values] error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_insert_dataframe_order_inconsistent_schema(self): """ target: test insert with dataframe fields inconsistent with schema method: insert dataframe, and fields order inconsistent with schema expected: assert num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 10 int_values = pd.Series(data=[i for i in range(nb)]) float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32") float_vec_values = cf.gen_vectors(nb, ct.default_dim) df = pd.DataFrame({ ct.default_float_field_name: float_values, ct.default_float_vec_field_name: float_vec_values, ct.default_int64_field_name: int_values }) error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_inconsistent_data(self): """ target: test insert with inconsistent data method: insert with data that same field has different type data expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) data = cf.gen_default_list_data(nb=100) data[0][1] = 1.0 error = {ct.err_code: 0, ct.err_msg: "The data in the same column must be of the same type"} collection_w.insert(data, check_task=CheckTasks.err_res, check_items=error) class TestInsertOperation(TestcaseBase): """ ****************************************************************** The following cases are used to test insert interface operations ****************************************************************** """ @pytest.fixture(scope="function", params=[8, 4096]) def dim(self, request): yield request.param @pytest.mark.tags(CaseLabel.L2) def test_insert_without_connection(self): """ target: test insert without connection method: insert after remove connection expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) self.connection_wrap.remove_connection(ct.default_alias) res_list, _ = self.connection_wrap.list_connections() assert ct.default_alias not in res_list data = cf.gen_default_list_data(10) error = {ct.err_code: 0, ct.err_msg: 'should create connect first'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.skip("https://github.com/milvus-io/milvus/issues/12680") @pytest.mark.parametrize("vec_fields", [[cf.gen_float_vec_field(name="float_vector1")], [cf.gen_binary_vec_field()], [cf.gen_binary_vec_field(), cf.gen_binary_vec_field("binary_vec")]]) def test_insert_multi_float_vec_fields(self, vec_fields): """ target: test insert into multi float vec fields collection method: create collection with different schema and insert expected: verify num entities """ schema = cf.gen_schema_multi_vector_fields(vec_fields) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields) collection_w.insert(df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_drop_collection(self): """ target: test insert and drop method: insert data and drop collection expected: verify collection if exist """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) collection_list, _ = self.utility_wrap.list_collections() assert collection_w.name in collection_list df = cf.gen_default_dataframe_data(ct.default_nb) collection_w.insert(data=df) collection_w.drop() collection_list, _ = self.utility_wrap.list_collections() assert collection_w.name not in collection_list @pytest.mark.tags(CaseLabel.L1) def test_insert_create_index(self): """ target: test insert and create index method: 1. insert 2. create index expected: verify num entities and index """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(ct.default_nb) collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_float_vec_field_name, default_index_params) assert collection_w.indexes[0] == index @pytest.mark.tags(CaseLabel.L1) def test_insert_after_create_index(self): """ target: test insert after create index method: 1. create index 2. insert data expected: verify index and num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_float_vec_field_name, default_index_params) assert collection_w.indexes[0] == index df = cf.gen_default_dataframe_data(ct.default_nb) collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_binary_after_index(self): """ target: test insert binary after index method: 1.create index 2.insert binary data expected: 1.index ok 2.num entities correct """ schema = cf.gen_default_binary_collection_schema() collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) collection_w.create_index(ct.default_binary_vec_field_name, default_binary_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_binary_vec_field_name, default_binary_index_params) assert collection_w.indexes[0] == index df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_create_index(self): """ target: test create index in auto_id=True collection method: 1.create auto_id=True collection and insert 2.create index expected: index correct """ schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_default_dataframe_data() df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) assert cf._check_primary_keys(mutation_res.primary_keys, ct.default_nb) assert collection_w.num_entities == ct.default_nb # create index collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] index, _ = collection_w.index() assert index == Index(collection_w.collection, ct.default_float_vec_field_name, default_index_params) assert collection_w.indexes[0] == index @pytest.mark.tags(CaseLabel.L2) def test_insert_auto_id_true(self): """ target: test insert ids fields values when auto_id=True method: 1.create collection with auto_id=True 2.insert without ids expected: verify primary_keys and num_entities """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) df = cf.gen_default_dataframe_data() df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) assert cf._check_primary_keys(mutation_res.primary_keys, ct.default_nb) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_twice_auto_id_true(self): """ target: test insert ids fields twice when auto_id=True method: 1.create collection with auto_id=True 2.insert twice expected: verify primary_keys unique """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) nb = 10 collection_w = self.init_collection_wrap(name=c_name, schema=schema) df = cf.gen_default_dataframe_data(nb) df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) primary_keys = mutation_res.primary_keys assert cf._check_primary_keys(primary_keys, nb) mutation_res_1, _ = collection_w.insert(data=df) primary_keys.extend(mutation_res_1.primary_keys) assert cf._check_primary_keys(primary_keys, nb * 2) assert collection_w.num_entities == nb * 2 @pytest.mark.tags(CaseLabel.L2) def test_insert_auto_id_true_list_data(self): """ target: test insert ids fields values when auto_id=True method: 1.create collection with auto_id=True 2.insert list data with ids field values expected: assert num entities """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) data = cf.gen_default_list_data() mutation_res, _ = collection_w.insert(data=data[1:]) assert mutation_res.insert_count == ct.default_nb assert cf._check_primary_keys(mutation_res.primary_keys, ct.default_nb) assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_true_with_dataframe_values(self): """ target: test insert with auto_id=True method: create collection with auto_id=True expected: 1.verify num entities 2.verify ids """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) df = cf.gen_default_dataframe_data(nb=100) error = {ct.err_code: 0, ct.err_msg: 'Auto_id is True, primary field should not have data'} collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) assert collection_w.is_empty @pytest.mark.tags(CaseLabel.L2) def test_insert_auto_id_true_with_list_values(self): """ target: test insert with auto_id=True method: create collection with auto_id=True expected: 1.verify num entities 2.verify ids """ c_name = cf.gen_unique_str(prefix) schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=c_name, schema=schema) data = cf.gen_default_list_data(nb=100) error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema'} collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error) assert collection_w.is_empty @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_false_same_values(self): """ target: test insert same ids with auto_id false method: 1.create collection with auto_id=False 2.insert same int64 field values expected: raise exception """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 100 data = cf.gen_default_list_data(nb=nb) data[0] = [1 for i in range(nb)] mutation_res, _ = collection_w.insert(data) assert mutation_res.insert_count == nb assert mutation_res.primary_keys == data[0] @pytest.mark.tags(CaseLabel.L1) def test_insert_auto_id_false_negative_values(self): """ target: test insert negative ids with auto_id false method: auto_id=False, primary field values is negative expected: verify num entities """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) nb = 100 data = cf.gen_default_list_data(nb) data[0] = [i for i in range(0, -nb, -1)] mutation_res, _ = collection_w.insert(data) assert mutation_res.primary_keys == data[0] assert collection_w.num_entities == nb @pytest.mark.tags(CaseLabel.L1) def test_insert_multi_threading(self): """ target: test concurrent insert method: multi threads insert expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(ct.default_nb) thread_num = 4 threads = [] primary_keys = df[ct.default_int64_field_name].values.tolist() def insert(thread_i): log.debug(f'In thread-{thread_i}') mutation_res, _ = collection_w.insert(df) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == primary_keys for i in range(thread_num): x = threading.Thread(target=insert, args=(i,)) threads.append(x) x.start() for t in threads: t.join() assert collection_w.num_entities == ct.default_nb * thread_num @pytest.mark.tags(CaseLabel.L2) @pytest.mark.skip(reason="Currently primary keys are not unique") def test_insert_multi_threading_auto_id(self): """ target: test concurrent insert auto_id=True collection method: 1.create auto_id=True collection 2.concurrent insert expected: verify primary keys unique """ pass @pytest.mark.tags(CaseLabel.L1) def test_insert_multi_times(self, dim): """ target: test insert multi times method: insert data multi times expected: verify num entities """ step = 120 nb = 12000 collection_w = self.init_collection_general(prefix, dim=dim)[0] for _ in range(nb // step): df = cf.gen_default_dataframe_data(step, dim) mutation_res, _ = collection_w.insert(data=df) assert mutation_res.insert_count == step assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == nb @pytest.mark.tags(CaseLabel.L1) def test_insert_all_datatype_collection(self): """ target: test insert into collection that contains all datatype fields method: 1.create all datatype collection 2.insert data expected: verify num entities """ self._connect() nb = 100 df = cf.gen_dataframe_all_data_type(nb=nb) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == nb class TestInsertAsync(TestcaseBase): """ ****************************************************************** The following cases are used to test insert async ****************************************************************** """ @pytest.mark.tags(CaseLabel.L1) def test_insert_sync(self): """ target: test async insert method: insert with async=True expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() future, _ = collection_w.insert(data=df, _async=True) future.done() mutation_res = future.result() assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_async_false(self): """ target: test insert with false async method: async = false expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() mutation_res, _ = collection_w.insert(data=df, _async=False) assert mutation_res.insert_count == ct.default_nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L1) def test_insert_async_callback(self): """ target: test insert with callback func method: insert with callback func expected: verify num entities """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() future, _ = collection_w.insert(data=df, _async=True, _callback=assert_mutation_result) future.done() mutation_res = future.result() assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == ct.default_nb @pytest.mark.tags(CaseLabel.L2) def test_insert_async_long(self): """ target: test insert with async method: insert 5w entities with callback func expected: verify num entities """ nb = 50000 collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb) future, _ = collection_w.insert(data=df, _async=True) future.done() mutation_res = future.result() assert mutation_res.insert_count == nb assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist() assert collection_w.num_entities == nb @pytest.mark.tags(CaseLabel.L2) def test_insert_async_callback_timeout(self): """ target: test insert async with callback method: insert 10w entities with timeout=1 expected: raise exception """ nb = 100000 collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb) future, _ = collection_w.insert(data=df, _async=True, _callback=assert_mutation_result, timeout=1) with pytest.raises(Exception): future.result() @pytest.mark.tags(CaseLabel.L2) def test_insert_async_invalid_data(self): """ target: test insert async with invalid data method: insert async with invalid data expected: raise exception """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) columns = [ct.default_int64_field_name, ct.default_float_vec_field_name] df = pd.DataFrame(columns=columns) error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"} collection_w.insert(data=df, _async=True, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_async_invalid_partition(self): """ target: test insert async with invalid partition method: insert async with invalid partition expected: raise exception """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() err_msg = "partitionID of partitionName:p can not be find" future, _ = collection_w.insert(data=df, partition_name="p", _async=True) future.done() with pytest.raises(Exception, match=err_msg): future.result() def assert_mutation_result(mutation_res): assert mutation_res.insert_count == ct.default_nb