// Copyright (C) 2019-2020 Zilliz. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software distributed under the License // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express // or implied. See the License for the specific language governing permissions and limitations under the License #include #include "pb/plan.pb.h" #include "segcore/SegmentGrowing.h" #include "segcore/SegmentGrowingImpl.h" #include "pb/schema.pb.h" #include "test_utils/DataGen.h" #include "query/Plan.h" using namespace milvus::segcore; using namespace milvus; namespace pb = milvus::proto; TEST(GrowingIndex, Correctness) { auto schema = std::make_shared(); auto pk = schema->AddDebugField("pk", DataType::INT64); auto random = schema->AddDebugField("random", DataType::DOUBLE); auto vec = schema->AddDebugField( "embeddings", DataType::VECTOR_FLOAT, 128, knowhere::metric::L2); schema->set_primary_field_id(pk); std::map index_params = { {"index_type", "IVF_FLAT"}, {"metric_type", "L2"}, {"nlist", "128"}}; std::map type_params = {{"dim", "128"}}; FieldIndexMeta fieldIndexMeta( vec, std::move(index_params), std::move(type_params)); auto& config = SegcoreConfig::default_config(); config.set_chunk_rows(1024); config.set_enable_interim_segment_index(true); std::map filedMap = {{vec, fieldIndexMeta}}; IndexMetaPtr metaPtr = std::make_shared(226985, std::move(filedMap)); auto segment = CreateGrowingSegment(schema, metaPtr); auto segmentImplPtr = dynamic_cast(segment.get()); milvus::proto::plan::PlanNode plan_node; auto vector_anns = plan_node.mutable_vector_anns(); vector_anns->set_vector_type(milvus::proto::plan::VectorType::FloatVector); vector_anns->set_placeholder_tag("$0"); vector_anns->set_field_id(102); auto query_info = vector_anns->mutable_query_info(); query_info->set_topk(5); query_info->set_round_decimal(3); query_info->set_metric_type("l2"); query_info->set_search_params(R"({"nprobe": 16})"); auto plan_str = plan_node.SerializeAsString(); milvus::proto::plan::PlanNode range_query_plan_node; auto vector_range_querys = range_query_plan_node.mutable_vector_anns(); vector_range_querys->set_vector_type( milvus::proto::plan::VectorType::FloatVector); vector_range_querys->set_placeholder_tag("$0"); vector_range_querys->set_field_id(102); auto range_query_info = vector_range_querys->mutable_query_info(); range_query_info->set_topk(5); range_query_info->set_round_decimal(3); range_query_info->set_metric_type("l2"); range_query_info->set_search_params( R"({"nprobe": 10, "radius": 600, "range_filter": 500})"); auto range_plan_str = range_query_plan_node.SerializeAsString(); int64_t per_batch = 10000; int64_t n_batch = 20; int64_t top_k = 5; for (int64_t i = 0; i < n_batch; i++) { auto dataset = DataGen(schema, per_batch); auto offset = segment->PreInsert(per_batch); auto pks = dataset.get_col(pk); segment->Insert(offset, per_batch, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_); auto filed_data = segmentImplPtr->get_insert_record() .get_field_data(vec); auto inserted = (i + 1) * per_batch; //once index built, chunk data will be removed if (i < 2) { EXPECT_EQ(filed_data->num_chunk(), upper_div(inserted, filed_data->get_size_per_chunk())); } else { EXPECT_EQ(filed_data->num_chunk(), 0); } auto num_queries = 5; auto ph_group_raw = CreatePlaceholderGroup(num_queries, 128, 1024); auto plan = milvus::query::CreateSearchPlanByExpr( *schema, plan_str.data(), plan_str.size()); auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString()); auto sr = segment->Search(plan.get(), ph_group.get()); EXPECT_EQ(sr->total_nq_, num_queries); EXPECT_EQ(sr->unity_topK_, top_k); EXPECT_EQ(sr->distances_.size(), num_queries * top_k); EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k); auto range_plan = milvus::query::CreateSearchPlanByExpr( *schema, range_plan_str.data(), range_plan_str.size()); auto range_ph_group = ParsePlaceholderGroup( range_plan.get(), ph_group_raw.SerializeAsString()); auto range_sr = segment->Search(range_plan.get(), range_ph_group.get()); ASSERT_EQ(range_sr->total_nq_, num_queries); EXPECT_EQ(sr->unity_topK_, top_k); EXPECT_EQ(sr->distances_.size(), num_queries * top_k); EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k); for (int j = 0; j < range_sr->seg_offsets_.size(); j++) { if (range_sr->seg_offsets_[j] != -1) { EXPECT_TRUE(sr->distances_[j] >= 500.0 && sr->distances_[j] <= 600.0); } } } } using Param = const char*; class GrowingIndexGetVectorTest : public ::testing::TestWithParam { void SetUp() override { auto param = GetParam(); metricType = param; } protected: const char* metricType; }; INSTANTIATE_TEST_CASE_P(IndexTypeParameters, GrowingIndexGetVectorTest, ::testing::Values(knowhere::metric::L2, knowhere::metric::COSINE, knowhere::metric::IP)); TEST_P(GrowingIndexGetVectorTest, GetVector) { auto schema = std::make_shared(); auto pk = schema->AddDebugField("pk", DataType::INT64); auto random = schema->AddDebugField("random", DataType::DOUBLE); auto vec = schema->AddDebugField( "embeddings", DataType::VECTOR_FLOAT, 128, metricType); schema->set_primary_field_id(pk); std::map index_params = { {"index_type", "IVF_FLAT"}, {"metric_type", metricType}, {"nlist", "128"}}; std::map type_params = {{"dim", "128"}}; FieldIndexMeta fieldIndexMeta( vec, std::move(index_params), std::move(type_params)); auto& config = SegcoreConfig::default_config(); config.set_chunk_rows(1024); config.set_enable_interim_segment_index(true); std::map filedMap = {{vec, fieldIndexMeta}}; IndexMetaPtr metaPtr = std::make_shared(100000, std::move(filedMap)); auto segment_growing = CreateGrowingSegment(schema, metaPtr); auto segment = dynamic_cast(segment_growing.get()); int64_t per_batch = 5000; int64_t n_batch = 20; int64_t dim = 128; for (int64_t i = 0; i < n_batch; i++) { auto dataset = DataGen(schema, per_batch); auto fakevec = dataset.get_col(vec); auto offset = segment->PreInsert(per_batch); segment->Insert(offset, per_batch, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_); auto num_inserted = (i + 1) * per_batch; auto ids_ds = GenRandomIds(num_inserted); auto result = segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted); auto vector = result.get()->mutable_vectors()->float_vector().data(); EXPECT_TRUE(vector.size() == num_inserted * dim); for (size_t i = 0; i < num_inserted; ++i) { auto id = ids_ds->GetIds()[i]; for (size_t j = 0; j < 128; ++j) { EXPECT_TRUE(vector[i * dim + j] == fakevec[(id % per_batch) * dim + j]); } } } }