package delegator import ( "context" "sort" "strconv" "github.com/golang/protobuf/proto" "go.uber.org/zap" "github.com/milvus-io/milvus-proto/go-api/v2/commonpb" "github.com/milvus-io/milvus-proto/go-api/v2/schemapb" "github.com/milvus-io/milvus/internal/proto/internalpb" "github.com/milvus-io/milvus/internal/proto/planpb" "github.com/milvus-io/milvus/internal/storage" "github.com/milvus-io/milvus/internal/util/clustering" "github.com/milvus-io/milvus/internal/util/exprutil" "github.com/milvus-io/milvus/internal/util/typeutil" "github.com/milvus-io/milvus/pkg/common" "github.com/milvus-io/milvus/pkg/log" "github.com/milvus-io/milvus/pkg/util/distance" "github.com/milvus-io/milvus/pkg/util/funcutil" "github.com/milvus-io/milvus/pkg/util/merr" ) const defaultFilterRatio float64 = 0.5 type PruneInfo struct { filterRatio float64 } func PruneSegments(ctx context.Context, partitionStats map[UniqueID]*storage.PartitionStatsSnapshot, searchReq *internalpb.SearchRequest, queryReq *internalpb.RetrieveRequest, schema *schemapb.CollectionSchema, sealedSegments []SnapshotItem, info PruneInfo, ) { log := log.Ctx(ctx) // 1. calculate filtered segments filteredSegments := make(map[UniqueID]struct{}, 0) clusteringKeyField := typeutil.GetClusteringKeyField(schema.Fields) if clusteringKeyField == nil { return } if searchReq != nil { // parse searched vectors var vectorsHolder commonpb.PlaceholderGroup err := proto.Unmarshal(searchReq.GetPlaceholderGroup(), &vectorsHolder) if err != nil || len(vectorsHolder.GetPlaceholders()) == 0 { return } vectorsBytes := vectorsHolder.GetPlaceholders()[0].GetValues() // parse dim dimStr, err := funcutil.GetAttrByKeyFromRepeatedKV(common.DimKey, clusteringKeyField.GetTypeParams()) if err != nil { return } dimValue, err := strconv.ParseInt(dimStr, 10, 64) if err != nil { return } for _, partID := range searchReq.GetPartitionIDs() { partStats := partitionStats[partID] FilterSegmentsByVector(partStats, searchReq, vectorsBytes, dimValue, clusteringKeyField, filteredSegments, info.filterRatio) } } else if queryReq != nil { // 0. parse expr from plan plan := planpb.PlanNode{} err := proto.Unmarshal(queryReq.GetSerializedExprPlan(), &plan) if err != nil { log.Error("failed to unmarshall serialized expr from bytes, failed the operation") return } expr, err := exprutil.ParseExprFromPlan(&plan) if err != nil { log.Error("failed to parse expr from plan, failed the operation") return } targetRanges, matchALL := exprutil.ParseRanges(expr, exprutil.ClusteringKey) if matchALL || targetRanges == nil { return } for _, partID := range queryReq.GetPartitionIDs() { partStats := partitionStats[partID] FilterSegmentsOnScalarField(partStats, targetRanges, clusteringKeyField, filteredSegments) } } // 2. remove filtered segments from sealed segment list if len(filteredSegments) > 0 { totalSegNum := 0 for idx, item := range sealedSegments { newSegments := make([]SegmentEntry, 0) totalSegNum += len(item.Segments) for _, segment := range item.Segments { if _, ok := filteredSegments[segment.SegmentID]; !ok { newSegments = append(newSegments, segment) } } item.Segments = newSegments sealedSegments[idx] = item } log.RatedInfo(30, "Pruned segment for search/query", zap.Int("filtered_segment_num[excluded]", len(filteredSegments)), zap.Int("total_segment_num", totalSegNum), zap.Float32("filtered_rate", float32(len(filteredSegments)/totalSegNum)), ) } } type segmentDisStruct struct { segmentID UniqueID distance float32 rows int // for keep track of sufficiency of topK } func FilterSegmentsByVector(partitionStats *storage.PartitionStatsSnapshot, searchReq *internalpb.SearchRequest, vectorBytes [][]byte, dim int64, keyField *schemapb.FieldSchema, filteredSegments map[UniqueID]struct{}, filterRatio float64, ) { // 1. calculate vectors' distances neededSegments := make(map[UniqueID]struct{}) for _, vecBytes := range vectorBytes { segmentsToSearch := make([]segmentDisStruct, 0) for segId, segStats := range partitionStats.SegmentStats { // here, we do not skip needed segments required by former query vector // meaning that repeated calculation will be carried and the larger the nq is // the more segments have to be included and prune effect will decline // 1. calculate distances from centroids for _, fieldStat := range segStats.FieldStats { if fieldStat.FieldID == keyField.GetFieldID() { if fieldStat.Centroids == nil || len(fieldStat.Centroids) == 0 { neededSegments[segId] = struct{}{} break } var dis []float32 var disErr error switch keyField.GetDataType() { case schemapb.DataType_FloatVector: dis, disErr = clustering.CalcVectorDistance(dim, keyField.GetDataType(), vecBytes, fieldStat.Centroids[0].GetValue().([]float32), searchReq.GetMetricType()) default: neededSegments[segId] = struct{}{} disErr = merr.WrapErrParameterInvalid(schemapb.DataType_FloatVector, keyField.GetDataType(), "Currently, pruning by cluster only support float_vector type") } // currently, we only support float vector and only one center one segment if disErr != nil { neededSegments[segId] = struct{}{} break } segmentsToSearch = append(segmentsToSearch, segmentDisStruct{ segmentID: segId, distance: dis[0], rows: segStats.NumRows, }) break } } } // 2. sort the distances switch searchReq.GetMetricType() { case distance.L2: sort.SliceStable(segmentsToSearch, func(i, j int) bool { return segmentsToSearch[i].distance < segmentsToSearch[j].distance }) case distance.IP, distance.COSINE: sort.SliceStable(segmentsToSearch, func(i, j int) bool { return segmentsToSearch[i].distance > segmentsToSearch[j].distance }) } // 3. filtered non-target segments segmentCount := len(segmentsToSearch) targetSegNum := int(float64(segmentCount) * filterRatio) optimizedRowCount := 0 // set the last n - targetSegNum as being filtered for i := 0; i < segmentCount; i++ { optimizedRowCount += segmentsToSearch[i].rows neededSegments[segmentsToSearch[i].segmentID] = struct{}{} if int64(optimizedRowCount) >= searchReq.GetTopk() && i >= targetSegNum { break } } } // 3. set not needed segments as removed for segId := range partitionStats.SegmentStats { if _, ok := neededSegments[segId]; !ok { filteredSegments[segId] = struct{}{} } } } func FilterSegmentsOnScalarField(partitionStats *storage.PartitionStatsSnapshot, targetRanges []*exprutil.PlanRange, keyField *schemapb.FieldSchema, filteredSegments map[UniqueID]struct{}, ) { // 1. try to filter segments overlap := func(min storage.ScalarFieldValue, max storage.ScalarFieldValue) bool { for _, tRange := range targetRanges { switch keyField.DataType { case schemapb.DataType_Int8, schemapb.DataType_Int16, schemapb.DataType_Int32, schemapb.DataType_Int64: targetRange := tRange.ToIntRange() statRange := exprutil.NewIntRange(min.GetValue().(int64), max.GetValue().(int64), true, true) return exprutil.IntRangeOverlap(targetRange, statRange) case schemapb.DataType_String, schemapb.DataType_VarChar: targetRange := tRange.ToStrRange() statRange := exprutil.NewStrRange(min.GetValue().(string), max.GetValue().(string), true, true) return exprutil.StrRangeOverlap(targetRange, statRange) } } return false } for segID, segStats := range partitionStats.SegmentStats { for _, fieldStat := range segStats.FieldStats { if keyField.FieldID == fieldStat.FieldID && !overlap(fieldStat.Min, fieldStat.Max) { filteredSegments[segID] = struct{}{} } } } }