/* * # Licensed to the LF AI & Data foundation under one * # or more contributor license agreements. See the NOTICE file * # distributed with this work for additional information * # regarding copyright ownership. The ASF licenses this file * # to you under the Apache License, Version 2.0 (the * # "License"); you may not use this file except in compliance * # with the License. You may obtain a copy of the License at * # * # http://www.apache.org/licenses/LICENSE-2.0 * # * # Unless required by applicable law or agreed to in writing, software * # distributed under the License is distributed on an "AS IS" BASIS, * # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * # See the License for the specific language governing permissions and * # limitations under the License. */ package function import ( "encoding/json" "net/http" "net/http/httptest" "os" "testing" "github.com/stretchr/testify/suite" "github.com/milvus-io/milvus-proto/go-api/v2/commonpb" "github.com/milvus-io/milvus-proto/go-api/v2/schemapb" "github.com/milvus-io/milvus/internal/util/credentials" "github.com/milvus-io/milvus/internal/util/function/models/vertexai" ) func TestVertexAITextEmbeddingProvider(t *testing.T) { suite.Run(t, new(VertexAITextEmbeddingProviderSuite)) } type VertexAITextEmbeddingProviderSuite struct { suite.Suite schema *schemapb.CollectionSchema providers []string } func (s *VertexAITextEmbeddingProviderSuite) SetupTest() { s.schema = &schemapb.CollectionSchema{ Name: "test", Fields: []*schemapb.FieldSchema{ {FieldID: 100, Name: "int64", DataType: schemapb.DataType_Int64}, {FieldID: 101, Name: "text", DataType: schemapb.DataType_VarChar}, { FieldID: 102, Name: "vector", DataType: schemapb.DataType_FloatVector, TypeParams: []*commonpb.KeyValuePair{ {Key: "dim", Value: "4"}, }, }, }, } } func createVertexAIProvider(url string, schema *schemapb.FieldSchema) (textEmbeddingProvider, error) { functionSchema := &schemapb.FunctionSchema{ Name: "test", Type: schemapb.FunctionType_Unknown, InputFieldNames: []string{"text"}, OutputFieldNames: []string{"vector"}, InputFieldIds: []int64{101}, OutputFieldIds: []int64{102}, Params: []*commonpb.KeyValuePair{ {Key: modelNameParamKey, Value: TestModel}, {Key: locationParamKey, Value: "mock_local"}, {Key: projectIDParamKey, Value: "mock_id"}, {Key: taskTypeParamKey, Value: vertexAICodeRetrival}, {Key: embeddingURLParamKey, Value: url}, {Key: dimParamKey, Value: "4"}, }, } mockClient := vertexai.NewVertexAIEmbedding(url, []byte{1, 2, 3}, "mock scope", "mock token") return NewVertexAIEmbeddingProvider(schema, functionSchema, mockClient, map[string]string{}, credentials.NewCredentials(map[string]string{"mock.credential_json": "mock"})) } func (s *VertexAITextEmbeddingProviderSuite) TestEmbedding() { ts := CreateVertexAIEmbeddingServer() defer ts.Close() provder, err := createVertexAIProvider(ts.URL, s.schema.Fields[2]) s.NoError(err) { data := []string{"sentence"} r, err2 := provder.CallEmbedding(data, InsertMode) ret := r.([][]float32) s.NoError(err2) s.Equal(1, len(ret)) s.Equal(4, len(ret[0])) s.Equal([]float32{0.0, 1.0, 2.0, 3.0}, ret[0]) } { data := []string{"sentence 1", "sentence 2", "sentence 3"} ret, _ := provder.CallEmbedding(data, SearchMode) s.Equal([][]float32{{0.0, 1.0, 2.0, 3.0}, {1.0, 2.0, 3.0, 4.0}, {2.0, 3.0, 4.0, 5.0}}, ret) } } func (s *VertexAITextEmbeddingProviderSuite) TestEmbeddingDimNotMatch() { ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { var res vertexai.EmbeddingResponse res.Predictions = append(res.Predictions, vertexai.Prediction{ Embeddings: vertexai.Embeddings{ Statistics: vertexai.Statistics{ Truncated: false, TokenCount: 10, }, Values: []float32{1.0, 1.0, 1.0, 1.0}, }, }) res.Predictions = append(res.Predictions, vertexai.Prediction{ Embeddings: vertexai.Embeddings{ Statistics: vertexai.Statistics{ Truncated: false, TokenCount: 10, }, Values: []float32{1.0, 1.0}, }, }) res.Metadata = vertexai.Metadata{ BillableCharacterCount: 100, } w.WriteHeader(http.StatusOK) data, _ := json.Marshal(res) w.Write(data) })) defer ts.Close() provder, err := createVertexAIProvider(ts.URL, s.schema.Fields[2]) s.NoError(err) // embedding dim not match data := []string{"sentence", "sentence"} _, err2 := provder.CallEmbedding(data, InsertMode) s.Error(err2) } func (s *VertexAITextEmbeddingProviderSuite) TestEmbeddingNubmerNotMatch() { ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { var res vertexai.EmbeddingResponse res.Predictions = append(res.Predictions, vertexai.Prediction{ Embeddings: vertexai.Embeddings{ Statistics: vertexai.Statistics{ Truncated: false, TokenCount: 10, }, Values: []float32{1.0, 1.0, 1.0, 1.0}, }, }) res.Metadata = vertexai.Metadata{ BillableCharacterCount: 100, } w.WriteHeader(http.StatusOK) data, _ := json.Marshal(res) w.Write(data) })) defer ts.Close() provder, err := createVertexAIProvider(ts.URL, s.schema.Fields[2]) s.NoError(err) // embedding dim not match data := []string{"sentence", "sentence2"} _, err2 := provder.CallEmbedding(data, InsertMode) s.Error(err2) } func (s *VertexAITextEmbeddingProviderSuite) TestGetVertexAIJsonKey() { os.Setenv(vertexServiceAccountJSONEnv, "ErrorPath") defer os.Unsetenv(vertexServiceAccountJSONEnv) _, err := getVertexAIJsonKey() s.Error(err) } func (s *VertexAITextEmbeddingProviderSuite) TestGetTaskType() { functionSchema := &schemapb.FunctionSchema{ Name: "test", Type: schemapb.FunctionType_Unknown, InputFieldNames: []string{"text"}, OutputFieldNames: []string{"vector"}, InputFieldIds: []int64{101}, OutputFieldIds: []int64{102}, Params: []*commonpb.KeyValuePair{ {Key: modelNameParamKey, Value: TestModel}, {Key: projectIDParamKey, Value: "mock_id"}, {Key: dimParamKey, Value: "4"}, }, } mockClient := vertexai.NewVertexAIEmbedding("mock_url", []byte{1, 2, 3}, "mock scope", "mock token") { provider, err := NewVertexAIEmbeddingProvider(s.schema.Fields[2], functionSchema, mockClient, map[string]string{}, credentials.NewCredentials(map[string]string{"mock.credential_json": "mock"})) s.NoError(err) s.Equal(provider.getTaskType(InsertMode), "RETRIEVAL_DOCUMENT") s.Equal(provider.getTaskType(SearchMode), "RETRIEVAL_QUERY") } { functionSchema.Params = append(functionSchema.Params, &commonpb.KeyValuePair{Key: taskTypeParamKey, Value: vertexAICodeRetrival}) provider, err := NewVertexAIEmbeddingProvider(s.schema.Fields[2], functionSchema, mockClient, map[string]string{}, credentials.NewCredentials(map[string]string{"mock.credential_json": "mock"})) s.NoError(err) s.Equal(provider.getTaskType(InsertMode), "RETRIEVAL_DOCUMENT") s.Equal(provider.getTaskType(SearchMode), "CODE_RETRIEVAL_QUERY") } { functionSchema.Params[3] = &commonpb.KeyValuePair{Key: taskTypeParamKey, Value: vertexAISTS} provider, err := NewVertexAIEmbeddingProvider(s.schema.Fields[2], functionSchema, mockClient, map[string]string{}, credentials.NewCredentials(map[string]string{"mock.credential_json": "mock"})) s.NoError(err) s.Equal(provider.getTaskType(InsertMode), "SEMANTIC_SIMILARITY") s.Equal(provider.getTaskType(SearchMode), "SEMANTIC_SIMILARITY") } } func (s *VertexAITextEmbeddingProviderSuite) TestNewVertexAIEmbeddingProvider() { functionSchema := &schemapb.FunctionSchema{ Name: "test", Type: schemapb.FunctionType_Unknown, InputFieldNames: []string{"text"}, OutputFieldNames: []string{"vector"}, InputFieldIds: []int64{101}, OutputFieldIds: []int64{102}, Params: []*commonpb.KeyValuePair{ {Key: modelNameParamKey, Value: TestModel}, {Key: projectIDParamKey, Value: "mock_id"}, {Key: dimParamKey, Value: "4"}, }, } mockClient := vertexai.NewVertexAIEmbedding("mock_url", []byte{1, 2, 3}, "mock scope", "mock token") provider, err := NewVertexAIEmbeddingProvider(s.schema.Fields[2], functionSchema, mockClient, map[string]string{}, credentials.NewCredentials(map[string]string{"mock.credential_json": "mock"})) s.NoError(err) s.True(provider.MaxBatch() > 0) s.Equal(provider.FieldDim(), int64(4)) } func (s *VertexAITextEmbeddingProviderSuite) TestParseCredentail() { { cred := credentials.NewCredentials(map[string]string{}) data, err := parseGcpCredentialInfo(cred, []*commonpb.KeyValuePair{}, map[string]string{}) s.Nil(data) s.ErrorContains(err, "VetexAI credentials file path is empty") } { os.Setenv(vertexServiceAccountJSONEnv, "mock.json") defer os.Unsetenv(vertexServiceAccountJSONEnv) cred := credentials.NewCredentials(map[string]string{}) data, err := parseGcpCredentialInfo(cred, []*commonpb.KeyValuePair{}, map[string]string{}) s.Nil(data) s.ErrorContains(err, "Vertexai: read credentials file failed") } { cred := credentials.NewCredentials(map[string]string{}) _, err := parseGcpCredentialInfo(cred, []*commonpb.KeyValuePair{}, map[string]string{"credential": "noExist"}) s.ErrorContains(err, "is not a gcp crediential, can not find key") } { cred := credentials.NewCredentials(map[string]string{"mock.credential_json": "NotBase64"}) _, err := parseGcpCredentialInfo(cred, []*commonpb.KeyValuePair{}, map[string]string{"credential": "mock"}) s.ErrorContains(err, "Parse gcp credential") } { cred := credentials.NewCredentials(map[string]string{"mock.credential_json": "bW9jaw=="}) _, err := parseGcpCredentialInfo(cred, []*commonpb.KeyValuePair{}, map[string]string{"credential": "mock"}) s.NoError(err) } }