Ref #42053
This is the first PR for optimizing `LIKE` with ngram inverted index.
Now, only VARCHAR data type is supported and only InnerMatch LIKE
(%xxx%) query is supported.
How to use it:
```
milvus_client = MilvusClient("http://localhost:19530")
schema = milvus_client.create_schema()
...
schema.add_field("content_ngram", DataType.VARCHAR, max_length=10000)
...
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="content_ngram", index_type="NGRAM", index_name="ngram_index", min_gram=2, max_gram=3)
milvus_client.create_collection(COLLECTION_NAME, ...)
```
min_gram and max_gram controls how we tokenize the documents. For
example, for min_gram=2 and max_gram=4, we will tokenize each document
with 2-gram, 3-gram and 4-gram.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
1. Add global scheduler for datacoord.
2. Define and implement new CreateTask, QueryTask, DropTask interfaces.
3. Refine Import, Compaction, Stats, Index task.
issue: https://github.com/milvus-io/milvus/issues/41123
Co-authored-by: Cai Zhang <cai.zhang@zilliz.com>