issue:https://github.com/milvus-io/milvus/issues/27576
# Main Goals
1. Create and describe collections with geospatial fields, enabling both
client and server to recognize and process geo fields.
2. Insert geospatial data as payload values in the insert binlog, and
print the values for verification.
3. Load segments containing geospatial data into memory.
4. Ensure query outputs can display geospatial data.
5. Support filtering on GIS functions for geospatial columns.
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.
6. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: tasty-gumi <1021989072@qq.com>
Related to #35303#30404
This PR change return type of `DeleteCodec.Deserialize` from
`storage.DeleteData` to `DeltaData`, which
reduces the memory usage of interface header.
Also refine `storage.DeltaData` methods to make it easier to usage.
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #34357
Go Parquet uses dictionary encoding by default, and it will fall back to
plain encoding if the dictionary size exceeds the dictionary size page
limit. Users can specify custom fallback encoding by using
`parquet.WithEncoding(ENCODING_METHOD)` in writer properties. However,
Go Parquet [fallbacks to plain
encoding](e65c1e295d/go/parquet/file/column_writer_types.gen.go.tmpl (L238))
rather than custom encoding method users provide. Therefore, this patch
only turns off dictionary encoding for the primary key.
With a 5 million auto ID primary key benchmark, the parquet file size
improves from 13.93 MB to 8.36 MB when dictionary encoding is turned
off, reducing primary key storage space by 40%.
Signed-off-by: shaoting-huang <shaoting.huang@zilliz.com>
See also #33787
The parsing delete log is distributed in lots of places, which is not
recommended and hard to maintain.
This PR abstract common parsing logic into `DeleteLog.Parse` method to
unify implementation and make it easier to replace json parsing lib.
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
See also #33561
This PR:
- Use zero copy when buffering insert messages
- Make `storage.InsertCodec` support serialize multiple insert data
chunk into same batch binlog files
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #33005
1. add `MemorySize` field for insert binlog.
2. `LogSize` means the file size in the storage object.
3. `MemorySize` means the size of the data in the memory.
---------
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Signed-off-by: cai.zhang <cai.zhang@zilliz.com>
add sparse float vector support to different milvus components,
including proxy, data node to receive and write sparse float vectors to
binlog, query node to handle search requests, index node to build index
for sparse float column, etc.
https://github.com/milvus-io/milvus/issues/29419
---------
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
issue: https://github.com/milvus-io/milvus/issues/27704
Add inverted index for some data types in Milvus. This index type can
save a lot of memory compared to loading all data into RAM and speed up
the term query and range query.
Supported: `INT8`, `INT16`, `INT32`, `INT64`, `FLOAT`, `DOUBLE`, `BOOL`
and `VARCHAR`.
Not supported: `ARRAY` and `JSON`.
Note:
- The inverted index for `VARCHAR` is not designed to serve full-text
search now. We will treat every row as a whole keyword instead of
tokenizing it into multiple terms.
- The inverted index don't support retrieval well, so if you create
inverted index for field, those operations which depend on the raw data
will fallback to use chunk storage, which will bring some performance
loss. For example, comparisons between two columns and retrieval of
output fields.
The inverted index is very easy to be used.
Taking below collection as an example:
```python
fields = [
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
FieldSchema(name="int8", dtype=DataType.INT8),
FieldSchema(name="int16", dtype=DataType.INT16),
FieldSchema(name="int32", dtype=DataType.INT32),
FieldSchema(name="int64", dtype=DataType.INT64),
FieldSchema(name="float", dtype=DataType.FLOAT),
FieldSchema(name="double", dtype=DataType.DOUBLE),
FieldSchema(name="bool", dtype=DataType.BOOL),
FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim),
]
schema = CollectionSchema(fields)
collection = Collection("demo", schema)
```
Then we can simply create inverted index for field via:
```python
index_type = "INVERTED"
collection.create_index("int8", {"index_type": index_type})
collection.create_index("int16", {"index_type": index_type})
collection.create_index("int32", {"index_type": index_type})
collection.create_index("int64", {"index_type": index_type})
collection.create_index("float", {"index_type": index_type})
collection.create_index("double", {"index_type": index_type})
collection.create_index("bool", {"index_type": index_type})
collection.create_index("varchar", {"index_type": index_type})
```
Then, term query and range query on the field can be speed up
automatically by the inverted index:
```python
result = collection.query(expr='int64 in [1, 2, 3]', output_fields=["pk"])
result = collection.query(expr='int64 < 5', output_fields=["pk"])
result = collection.query(expr='int64 > 2997', output_fields=["pk"])
result = collection.query(expr='1 < int64 < 5', output_fields=["pk"])
```
---------
Signed-off-by: longjiquan <jiquan.long@zilliz.com>
See also #27675
When L0 segment contains only delta data, merged statslog shall be
skiped when performing sync task
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>