mirror of https://github.com/milvus-io/milvus.git
test: add bulk import testcases for full text search (#37197)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>pull/38057/head
parent
8188e1472d
commit
e5775a71af
|
@ -27,6 +27,7 @@ class DataField:
|
|||
vec_field = "vectors"
|
||||
float_vec_field = "float32_vectors"
|
||||
sparse_vec_field = "sparse_vectors"
|
||||
bm25_sparse_vec_field = "bm25_sparse_vectors"
|
||||
image_float_vec_field = "image_float_vec_field"
|
||||
text_float_vec_field = "text_float_vec_field"
|
||||
binary_vec_field = "binary_vec_field"
|
||||
|
|
|
@ -2,7 +2,7 @@ import logging
|
|||
import random
|
||||
import time
|
||||
import pytest
|
||||
from pymilvus import DataType
|
||||
from pymilvus import DataType, Function, FunctionType
|
||||
from pymilvus.bulk_writer import RemoteBulkWriter, BulkFileType
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
@ -1602,6 +1602,174 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
assert "name" in fields_from_search
|
||||
assert "address" in fields_from_search
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.parametrize("auto_id", [True])
|
||||
@pytest.mark.parametrize("dim", [128])
|
||||
@pytest.mark.parametrize("entities", [1000])
|
||||
@pytest.mark.parametrize("enable_dynamic_field", [True])
|
||||
@pytest.mark.parametrize("sparse_format", ["doc"])
|
||||
@pytest.mark.parametrize("file_format", ["parquet", "json"])
|
||||
def test_with_all_field_and_bm25_function_with_bulk_writer(self, auto_id, dim, entities, enable_dynamic_field, sparse_format, file_format):
|
||||
"""
|
||||
target: test bulk insert with all field and bm25 function
|
||||
method: create collection with all field and bm25 function, then import data with bulk writer
|
||||
expected: verify data imported correctly
|
||||
"""
|
||||
self._connect()
|
||||
fields = [
|
||||
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
|
||||
cf.gen_int64_field(name=df.int_field),
|
||||
cf.gen_float_field(name=df.float_field),
|
||||
cf.gen_string_field(name=df.string_field),
|
||||
cf.gen_string_field(name=df.text_field, enable_analyzer=True, enable_match=True),
|
||||
cf.gen_json_field(name=df.json_field),
|
||||
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
|
||||
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
|
||||
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=100),
|
||||
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
|
||||
cf.gen_float_vec_field(name=df.float_vec_field, dim=dim),
|
||||
cf.gen_sparse_vec_field(name=df.sparse_vec_field),
|
||||
cf.gen_sparse_vec_field(name=df.bm25_sparse_vec_field),
|
||||
]
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
bm25_function = Function(
|
||||
name="text_bm25_emb",
|
||||
function_type=FunctionType.BM25,
|
||||
input_field_names=[df.text_field],
|
||||
output_field_names=[df.bm25_sparse_vec_field],
|
||||
params={},
|
||||
)
|
||||
schema.add_function(bm25_function)
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
documents = []
|
||||
if file_format == "parquet":
|
||||
ff = BulkFileType.PARQUET
|
||||
elif file_format == "json":
|
||||
ff = BulkFileType.JSON
|
||||
else:
|
||||
raise Exception(f"not support file format:{file_format}")
|
||||
with RemoteBulkWriter(
|
||||
schema=schema,
|
||||
remote_path="bulk_data",
|
||||
connect_param=RemoteBulkWriter.ConnectParam(
|
||||
bucket_name=self.bucket_name,
|
||||
endpoint=self.minio_endpoint,
|
||||
access_key="minioadmin",
|
||||
secret_key="minioadmin",
|
||||
),
|
||||
file_type=ff,
|
||||
) as remote_writer:
|
||||
json_value = [
|
||||
# 1,
|
||||
# 1.0,
|
||||
# "1",
|
||||
# [1, 2, 3],
|
||||
# ["1", "2", "3"],
|
||||
# [1, 2, "3"],
|
||||
{"key": "value"},
|
||||
]
|
||||
for i in range(entities):
|
||||
row = {
|
||||
df.pk_field: i,
|
||||
df.int_field: 1,
|
||||
df.float_field: 1.0,
|
||||
df.string_field: "string",
|
||||
df.text_field: fake.text(),
|
||||
df.json_field: json_value[i%len(json_value)],
|
||||
df.array_int_field: [1, 2],
|
||||
df.array_float_field: [1.0, 2.0],
|
||||
df.array_string_field: ["string1", "string2"],
|
||||
df.array_bool_field: [True, False],
|
||||
df.float_vec_field: cf.gen_vectors(1, dim)[0],
|
||||
df.sparse_vec_field: cf.gen_sparse_vectors(1, dim, sparse_format=sparse_format)[0]
|
||||
}
|
||||
if auto_id:
|
||||
row.pop(df.pk_field)
|
||||
if enable_dynamic_field:
|
||||
row["name"] = fake.name()
|
||||
row["address"] = fake.address()
|
||||
documents.append(row[df.text_field])
|
||||
remote_writer.append_row(row)
|
||||
remote_writer.commit()
|
||||
files = remote_writer.batch_files
|
||||
# import data
|
||||
for f in files:
|
||||
t0 = time.time()
|
||||
task_id, _ = self.utility_wrap.do_bulk_insert(
|
||||
collection_name=c_name, files=f
|
||||
)
|
||||
logging.info(f"bulk insert task ids:{task_id}")
|
||||
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
|
||||
task_ids=[task_id], timeout=300
|
||||
)
|
||||
tt = time.time() - t0
|
||||
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
|
||||
assert success
|
||||
num_entities = self.collection_wrap.num_entities
|
||||
log.info(f" collection entities: {num_entities}")
|
||||
assert num_entities == entities
|
||||
# verify imported data is available for search
|
||||
index_params = ct.default_index
|
||||
float_vec_fields = [f.name for f in fields if "vec" in f.name and "float" in f.name]
|
||||
sparse_vec_fields = [f.name for f in fields if "vec" in f.name and "sparse" in f.name and "bm25" not in f.name]
|
||||
bm25_sparse_vec_fields = [f.name for f in fields if "vec" in f.name and "sparse" in f.name and "bm25" in f.name]
|
||||
for f in float_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=index_params
|
||||
)
|
||||
for f in sparse_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=ct.default_sparse_inverted_index
|
||||
)
|
||||
for f in bm25_sparse_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=ct.default_text_sparse_inverted_index
|
||||
)
|
||||
self.collection_wrap.load()
|
||||
log.info(f"wait for load finished and be ready for search")
|
||||
time.sleep(2)
|
||||
# log.info(f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}")
|
||||
search_data = cf.gen_vectors(1, dim)
|
||||
search_params = ct.default_search_params
|
||||
res, _ = self.collection_wrap.search(
|
||||
search_data,
|
||||
df.float_vec_field,
|
||||
param=search_params,
|
||||
limit=1,
|
||||
output_fields=["*"],
|
||||
check_task=CheckTasks.check_search_results,
|
||||
check_items={"nq": 1, "limit": 1},
|
||||
)
|
||||
for hit in res:
|
||||
for r in hit:
|
||||
fields_from_search = r.fields.keys()
|
||||
for f in fields:
|
||||
if f.name == df.bm25_sparse_vec_field:
|
||||
continue
|
||||
assert f.name in fields_from_search
|
||||
if enable_dynamic_field:
|
||||
assert "name" in fields_from_search
|
||||
assert "address" in fields_from_search
|
||||
|
||||
# verify full text search
|
||||
word_freq = cf.analyze_documents(documents)
|
||||
token = word_freq.most_common(1)[0][0]
|
||||
|
||||
search_data = [f" {token} " + fake.text()]
|
||||
search_params = ct.default_text_sparse_search_params
|
||||
res, _ = self.collection_wrap.search(
|
||||
search_data,
|
||||
df.bm25_sparse_vec_field,
|
||||
param=search_params,
|
||||
limit=1,
|
||||
output_fields=["*"],
|
||||
check_task=CheckTasks.check_search_results,
|
||||
check_items={"nq": 1, "limit": 1},
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
|
|
Loading…
Reference in New Issue