add some test

pull/3/head
xj.lin 2019-03-24 19:45:15 +08:00
parent 584c60d363
commit d37f89dc3d
4 changed files with 65 additions and 3 deletions

View File

@ -35,7 +35,7 @@ class DefaultIndex(Index):
# maybe need to specif parameters
pass
def build(d, vectors, DEVICE=INDEX_DEVICES.CPU):
def build(self, d, vectors, DEVICE=INDEX_DEVICES.CPU):
index = faiss.IndexFlatL2(d) # trained
index.add(vectors)
return index

View File

@ -0,0 +1,63 @@
from ..build_index import *
import faiss
import numpy as np
import unittest
class TestBuildIndex(unittest.TestCase):
def test_factory_method(self):
pass
def test_default_index(self):
d = 64
nb = 10000
nq = 100
_, xb, xq = get_dataset(d, nb, 500, nq)
# Expected result
index = faiss.IndexFlatL2(d)
index.add(xb)
Dref, Iref = index.search(xq, 5)
builder = DefaultIndex()
index2 = builder.build(d, xb)
Dnew, Inew = index2.search(xq, 5)
assert np.all(Dnew == Dref) and np.all(Inew == Iref)
def test_increase(self):
d = 64
nb = 10000
nq = 100
_, xb, xq = get_dataset(d, nb, 500, nq)
index = faiss.IndexFlatL2(d)
index.add(xb)
pass
def test_serialize(self):
pass
def get_dataset(d, nb, nt, nq):
"""A dataset that is not completely random but still challenging to
index
"""
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(1338)
x = rs.normal(size=(n, d1))
x = np.dot(x, rs.rand(d1, d))
# now we have a d1-dim ellipsoid in d-dimensional space
# higher factor (>4) -> higher frequency -> less linear
x = x * (rs.rand(d) * 4 + 0.1)
x = np.sin(x)
x = x.astype('float32')
return x[:nt], x[nt:-nq], x[-nq:]
if __name__ == "__main__":
unittest.main()

View File

@ -77,8 +77,7 @@ faiss.write_index(index, writer)
ar_data = faiss.vector_to_array(writer.data)
import pickle
pickle.dump(ar_data, open("/tmp/faiss/ser_1", "wb"))
#index_3 = pickle.load("/tmp/faiss/ser_1")
index_3 = pickle.load("/tmp/faiss/ser_1")
# index_2 = faiss.IndexFlatL2(d) # build the index