Add test cases of GetVectorById (#23666)

Signed-off-by: nico <cheng.yuan@zilliz.com>
pull/23725/head
nico 2023-04-25 18:52:34 +08:00 committed by GitHub
parent 47eeb1fc0b
commit c5f4a47eed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 206 additions and 2 deletions

View File

@ -456,7 +456,7 @@ def gen_invalid_field_types():
return field_types
def gen_invaild_search_params_type():
def gen_invalid_search_params_type():
invalid_search_key = 100
search_params = []
for index_type in ct.all_index_types:

View File

@ -327,7 +327,7 @@ class TestCollectionSearchInvalid(TestcaseBase):
collection_w.create_index("float_vector", default_index)
collection_w.load()
# 3. search
invalid_search_params = cf.gen_invaild_search_params_type()
invalid_search_params = cf.gen_invalid_search_params_type()
message = "Search params check failed"
for invalid_search_param in invalid_search_params:
if index == invalid_search_param["index_type"]:
@ -828,6 +828,7 @@ class TestCollectionSearchInvalid(TestcaseBase):
ct.err_msg: "Field int63 not exist"})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="Now support output vector field")
@pytest.mark.parametrize("output_fields", [[default_search_field], ["%"]])
def test_search_output_field_vector(self, output_fields):
"""
@ -844,6 +845,32 @@ class TestCollectionSearchInvalid(TestcaseBase):
default_search_params, default_limit,
default_search_exp, output_fields=output_fields)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("index, param", zip(ct.all_index_types[-2:], ct.default_index_params[-2:]))
def test_search_output_field_vector_after_gpu_index(self, index, param):
"""
target: test search with vector as output field
method: 1. create a collection and insert data
2. create an index which doesn't output vectors
3. load and search
expected: raise exception and report the error
"""
# 1. create a collection and insert data
collection_w = self.init_collection_general(prefix, True, is_index=False)[0]
# 2. create an index which doesn't output vectors
default_index = {"index_type": index, "params": param, "metric_type": "L2"}
collection_w.create_index(field_name, default_index)
# 3. load and search
collection_w.load()
search_params = cf.gen_search_param(index)[0]
collection_w.search(vectors[:default_nq], field_name, search_params,
default_limit, output_fields=[field_name],
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "not supported"})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("output_fields", [["*%"], ["**"], ["*", "@"]])
def test_search_output_field_invalid_wildcard(self, output_fields):
@ -2772,6 +2799,33 @@ class TestCollectionSearch(TestcaseBase):
assert len(res[0][0].entity._row_data) != 0
assert default_int64_field_name in res[0][0].entity._row_data
@pytest.mark.tags(CaseLabel.L1)
def test_search_with_output_vector_field(self, auto_id, _async):
"""
target: test search with output fields
method: search with one output_field
expected: search success
"""
# 1. initialize with data
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
auto_id=auto_id)[0:4]
# 2. search
log.info("test_search_with_output_field: Searching collection %s" % collection_w.name)
res = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit,
default_search_exp, _async=_async,
output_fields=[field_name],
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"ids": insert_ids,
"limit": default_limit,
"_async": _async})[0]
if _async:
res.done()
res = res.result()
assert len(res[0][0].entity._row_data) != 0
assert field_name in res[0][0].entity._row_data
@pytest.mark.tags(CaseLabel.L2)
def test_search_with_output_fields(self, nb, nq, dim, auto_id, _async):
"""
@ -2803,6 +2857,156 @@ class TestCollectionSearch(TestcaseBase):
assert len(res[0][0].entity._row_data) != 0
assert (default_int64_field_name and default_float_field_name) in res[0][0].entity._row_data
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip(reason="issue #23601")
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:6],
ct.default_index_params[:6]))
def test_search_output_field_vector_after_different_index(self, index, params):
"""
target: test search with output vector field after different index
method: 1. create a collection and insert data
2. create index and load
3. search with output field vector
4. check the result vectors should be equal to the inserted
expected: search success
"""
# 1. create a collection and insert data
collection_w = self.init_collection_general(prefix, is_index=False)[0]
data = cf.gen_default_dataframe_data()
collection_w.insert(data)
# 2. create index and load
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
collection_w.create_index(field_name, default_index)
collection_w.load()
# 3. search with output field vector
search_params = cf.gen_search_param(index)[0]
res = collection_w.search(vectors[:1], default_search_field,
search_params, 2, default_search_exp,
output_fields=[field_name],
check_task=CheckTasks.check_search_results,
check_items={"nq": 1,
"limit": 2})[0]
# 4. check the result vectors should be equal to the inserted
log.info(res[0][0].id)
log.info(res[0][0].entity.float_vector)
log.info(data['float_vector'][0])
assert res[0][0].entity.float_vector == data[field_name][res[0][0].id]
# log.info(data['float_vector'][1])
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip(reason="issue #23661")
@pytest.mark.parametrize("index", ct.all_index_types[6:8])
def test_search_output_field_vector_after_binary_index(self, index):
"""
target: test search with output vector field after binary index
method: 1. create a collection and insert data
2. create index and load
3. search with output field vector
4. check the result vectors should be equal to the inserted
expected: search success
"""
# 1. create a collection and insert data
collection_w = self.init_collection_general(prefix, is_binary=True, is_index=False)[0]
data = cf.gen_default_binary_dataframe_data()[0]
collection_w.insert(data)
# 2. create index and load
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "JACCARD"}
collection_w.create_index(binary_field_name, default_index)
collection_w.load()
# 3. search with output field vector
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
binary_vectors = cf.gen_binary_vectors(1, default_dim)[1]
res = collection_w.search(binary_vectors, binary_field_name,
ct.default_search_binary_params, 2, default_search_exp,
output_fields=[binary_field_name])[0]
# 4. check the result vectors should be equal to the inserted
log.info(res[0][0].id)
log.info(res[0][0].entity.float_vector)
log.info(data['binary_vector'][0])
assert res[0][0].entity.binary_vector == data[binary_field_name][res[0][0].id]
# log.info(data['float_vector'][1])
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("dim", [32, 128, 768])
def test_search_output_field_vector_with_different_dim(self, dim):
"""
target: test search with output vector field after binary index
method: 1. create a collection and insert data
2. create index and load
3. search with output field vector
4. check the result vectors should be equal to the inserted
expected: search success
"""
# 1. create a collection and insert data
collection_w = self.init_collection_general(prefix, is_index=False, dim=dim)[0]
data = cf.gen_default_dataframe_data(dim=dim)
collection_w.insert(data)
# 2. create index and load
index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", index_params)
collection_w.load()
# 3. search with output field vector
vectors = cf.gen_vectors(default_nq, dim=dim)
res = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
output_fields=[field_name],
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})[0]
# 4. check the result vectors should be equal to the inserted
log.info(res[0][0].id)
log.info(res[0][0].entity.float_vector)
log.info(data['float_vector'][0])
for i in range(default_limit):
assert len(res[0][i].entity.float_vector) == len(data[field_name][res[0][i].id])
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dim", [32, 128, 768])
def test_search_output_field_vector_with_different_dim(self, dim):
"""
target: test search with output vector field after binary index
method: 1. create a collection and insert data
2. create index and load
3. search with output field vector
4. check the result vectors should be equal to the inserted
expected: search success
"""
# 1. create a collection and insert data
collection_w = self.init_collection_general(prefix, is_index=False, dim=dim)[0]
data = cf.gen_default_dataframe_data(dim=dim)
collection_w.insert(data)
# 2. create index and load
index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", index_params)
collection_w.load()
# 3. search with output field vector
vectors = cf.gen_vectors(default_nq, dim=dim)
res = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
output_fields=[field_name],
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})[0]
# 4. check the result vectors should be equal to the inserted
log.info(res[0][0].id)
log.info(res[0][0].entity.float_vector)
log.info(data['float_vector'][0])
for i in range(default_limit):
assert len(res[0][i].entity.float_vector) == len(data[field_name][res[0][i].id])
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("output_fields", [["*"], ["*", default_float_field_name]])
def test_search_with_output_field_wildcard(self, output_fields, auto_id, _async):