mirror of https://github.com/milvus-io/milvus.git
parent
8959382ca6
commit
c2c8ddd432
|
@ -289,7 +289,7 @@ def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0):
|
|||
int32_values = pd.Series(data=[np.int32(i) for i in range(start, start + nb)], dtype="int32")
|
||||
int16_values = pd.Series(data=[np.int16(i) for i in range(start, start + nb)], dtype="int16")
|
||||
int8_values = pd.Series(data=[np.int8(i) for i in range(start, start + nb)], dtype="int8")
|
||||
bool_values = pd.Series(data=[np.bool(i) for i in range(start, start + nb)], dtype="bool")
|
||||
bool_values = pd.Series(data=[np.bool_(i) for i in range(start, start + nb)], dtype="bool")
|
||||
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
|
||||
double_values = pd.Series(data=[np.double(i) for i in range(start, start + nb)], dtype="double")
|
||||
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
|
||||
|
@ -352,7 +352,7 @@ def gen_default_tuple_data(nb=ct.default_nb, dim=ct.default_dim):
|
|||
def gen_numpy_data(nb=ct.default_nb, dim=ct.default_dim):
|
||||
int_values = np.arange(nb, dtype='int64')
|
||||
float_values = np.arange(nb, dtype='float32')
|
||||
string_values = [np.str(i) for i in range(nb)]
|
||||
string_values = [np.str_(i) for i in range(nb)]
|
||||
float_vec_values = gen_vectors(nb, dim)
|
||||
data = [int_values, float_values, string_values, float_vec_values]
|
||||
return data
|
||||
|
@ -574,20 +574,20 @@ def ip(x, y):
|
|||
|
||||
|
||||
def jaccard(x, y):
|
||||
x = np.asarray(x, np.bool)
|
||||
y = np.asarray(y, np.bool)
|
||||
x = np.asarray(x, np.bool_)
|
||||
y = np.asarray(y, np.bool_)
|
||||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
||||
|
||||
|
||||
def hamming(x, y):
|
||||
x = np.asarray(x, np.bool)
|
||||
y = np.asarray(y, np.bool)
|
||||
x = np.asarray(x, np.bool_)
|
||||
y = np.asarray(y, np.bool_)
|
||||
return np.bitwise_xor(x, y).sum()
|
||||
|
||||
|
||||
def tanimoto(x, y):
|
||||
x = np.asarray(x, np.bool)
|
||||
y = np.asarray(y, np.bool)
|
||||
x = np.asarray(x, np.bool_)
|
||||
y = np.asarray(y, np.bool_)
|
||||
res = np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
||||
if res == 0:
|
||||
value = 0
|
||||
|
@ -597,20 +597,20 @@ def tanimoto(x, y):
|
|||
|
||||
|
||||
def tanimoto_calc(x, y):
|
||||
x = np.asarray(x, np.bool)
|
||||
y = np.asarray(y, np.bool)
|
||||
x = np.asarray(x, np.bool_)
|
||||
y = np.asarray(y, np.bool_)
|
||||
return np.double((len(x) - np.bitwise_xor(x, y).sum())) / (len(y) + np.bitwise_xor(x, y).sum())
|
||||
|
||||
|
||||
def substructure(x, y):
|
||||
x = np.asarray(x, np.bool)
|
||||
y = np.asarray(y, np.bool)
|
||||
x = np.asarray(x, np.bool_)
|
||||
y = np.asarray(y, np.bool_)
|
||||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
|
||||
|
||||
|
||||
def superstructure(x, y):
|
||||
x = np.asarray(x, np.bool)
|
||||
y = np.asarray(y, np.bool)
|
||||
x = np.asarray(x, np.bool_)
|
||||
y = np.asarray(y, np.bool_)
|
||||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue