mirror of https://github.com/milvus-io/milvus.git
test: add bf/f16 bulk insert testcase (#32506)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>pull/32346/head^2
parent
fef7812254
commit
a5f0fc4373
|
@ -4,6 +4,7 @@ import os
|
|||
import time
|
||||
|
||||
import numpy as np
|
||||
import jax.numpy as jnp
|
||||
import pandas as pd
|
||||
import random
|
||||
from faker import Faker
|
||||
|
@ -25,6 +26,8 @@ class DataField:
|
|||
image_float_vec_field = "image_float_vec_field"
|
||||
text_float_vec_field = "text_float_vec_field"
|
||||
binary_vec_field = "binary_vec_field"
|
||||
bf16_vec_field = "bf16_vec_field"
|
||||
fp16_vec_field = "fp16_vec_field"
|
||||
int_field = "int_scalar"
|
||||
string_field = "string_scalar"
|
||||
bool_field = "bool_scalar"
|
||||
|
@ -90,6 +93,42 @@ def gen_binary_vectors(nb, dim):
|
|||
return vectors
|
||||
|
||||
|
||||
def gen_fp16_vectors(num, dim):
|
||||
"""
|
||||
generate float16 vector data
|
||||
raw_vectors : the vectors
|
||||
fp16_vectors: the bytes used for insert
|
||||
return: raw_vectors and fp16_vectors
|
||||
"""
|
||||
raw_vectors = []
|
||||
fp16_vectors = []
|
||||
for _ in range(num):
|
||||
raw_vector = [random.random() for _ in range(dim)]
|
||||
raw_vectors.append(raw_vector)
|
||||
fp16_vector = np.array(raw_vector, dtype=np.float16).view(np.uint8).tolist()
|
||||
fp16_vectors.append(fp16_vector)
|
||||
|
||||
return raw_vectors, fp16_vectors
|
||||
|
||||
|
||||
def gen_bf16_vectors(num, dim):
|
||||
"""
|
||||
generate brain float16 vector data
|
||||
raw_vectors : the vectors
|
||||
bf16_vectors: the bytes used for insert
|
||||
return: raw_vectors and bf16_vectors
|
||||
"""
|
||||
raw_vectors = []
|
||||
bf16_vectors = []
|
||||
for _ in range(num):
|
||||
raw_vector = [random.random() for _ in range(dim)]
|
||||
raw_vectors.append(raw_vector)
|
||||
bf16_vector = np.array(jnp.array(raw_vector, dtype=jnp.bfloat16)).view(np.uint8).tolist()
|
||||
bf16_vectors.append(bf16_vector)
|
||||
|
||||
return raw_vectors, bf16_vectors
|
||||
|
||||
|
||||
def gen_row_based_json_file(row_file, str_pk, data_fields, float_vect,
|
||||
rows, dim, start_uid=0, err_type="", enable_dynamic_field=False, **kwargs):
|
||||
|
||||
|
@ -311,7 +350,7 @@ def gen_column_base_json_file(col_file, str_pk, data_fields, float_vect,
|
|||
f.write("\n")
|
||||
|
||||
|
||||
def gen_vectors_in_numpy_file(dir, data_field, float_vector, rows, dim, force=False):
|
||||
def gen_vectors_in_numpy_file(dir, data_field, float_vector, rows, dim, vector_type="float32", force=False):
|
||||
file_name = f"{data_field}.npy"
|
||||
file = f'{dir}/{file_name}'
|
||||
|
||||
|
@ -319,9 +358,18 @@ def gen_vectors_in_numpy_file(dir, data_field, float_vector, rows, dim, force=Fa
|
|||
# vector columns
|
||||
vectors = []
|
||||
if rows > 0:
|
||||
if float_vector:
|
||||
if vector_type == "float32":
|
||||
vectors = gen_float_vectors(rows, dim)
|
||||
arr = np.array(vectors)
|
||||
elif vector_type == "fp16":
|
||||
vectors = gen_fp16_vectors(rows, dim)[1]
|
||||
arr = np.array(vectors, dtype=np.dtype("uint8"))
|
||||
elif vector_type == "bf16":
|
||||
vectors = gen_bf16_vectors(rows, dim)[1]
|
||||
arr = np.array(vectors, dtype=np.dtype("uint8"))
|
||||
elif vector_type == "binary":
|
||||
vectors = gen_binary_vectors(rows, (dim // 8))
|
||||
arr = np.array(vectors, dtype=np.dtype("uint8"))
|
||||
else:
|
||||
vectors = gen_binary_vectors(rows, (dim // 8))
|
||||
arr = np.array(vectors, dtype=np.dtype("uint8"))
|
||||
|
@ -429,6 +477,12 @@ def gen_data_by_data_field(data_field, rows, start=0, float_vector=True, dim=128
|
|||
if "float" in data_field:
|
||||
data = gen_vectors(float_vector=True, rows=rows, dim=dim)
|
||||
data = pd.Series([np.array(x, dtype=np.dtype("float32")) for x in data])
|
||||
elif "fp16" in data_field:
|
||||
data = gen_fp16_vectors(rows, dim)[1]
|
||||
data = pd.Series([np.array(x, dtype=np.dtype("uint8")) for x in data])
|
||||
elif "bf16" in data_field:
|
||||
data = gen_bf16_vectors(rows, dim)[1]
|
||||
data = pd.Series([np.array(x, dtype=np.dtype("uint8")) for x in data])
|
||||
elif "binary" in data_field:
|
||||
data = gen_vectors(float_vector=False, rows=rows, dim=dim)
|
||||
data = pd.Series([np.array(x, dtype=np.dtype("uint8")) for x in data])
|
||||
|
@ -544,9 +598,14 @@ def gen_dict_data_by_data_field(data_fields, rows, start=0, float_vector=True, d
|
|||
if "vec" in data_field:
|
||||
if "float" in data_field:
|
||||
float_vector = True
|
||||
d[data_field] = gen_vectors(float_vector=float_vector, rows=1, dim=dim)[0]
|
||||
if "binary" in data_field:
|
||||
float_vector = False
|
||||
d[data_field] = gen_vectors(float_vector=float_vector, rows=1, dim=dim)[0]
|
||||
if "bf16" in data_field:
|
||||
d[data_field] = gen_bf16_vectors(1, dim)[1][0]
|
||||
if "fp16" in data_field:
|
||||
d[data_field] = gen_fp16_vectors(1, dim)[1][0]
|
||||
elif data_field == DataField.float_field:
|
||||
d[data_field] = random.random()
|
||||
elif data_field == DataField.double_field:
|
||||
|
@ -623,12 +682,21 @@ def gen_npy_files(float_vector, rows, dim, data_fields, file_size=None, file_num
|
|||
# gen the numpy file without subfolders if only one set of files
|
||||
for data_field in data_fields:
|
||||
if "vec" in data_field:
|
||||
vector_type = "float32"
|
||||
if "float" in data_field:
|
||||
float_vector = True
|
||||
vector_type = "float32"
|
||||
if "binary" in data_field:
|
||||
float_vector = False
|
||||
vector_type = "binary"
|
||||
if "bf16" in data_field:
|
||||
float_vector = True
|
||||
vector_type = "bf16"
|
||||
if "fp16" in data_field:
|
||||
float_vector = True
|
||||
vector_type = "fp16"
|
||||
file_name = gen_vectors_in_numpy_file(dir=data_source, data_field=data_field, float_vector=float_vector,
|
||||
rows=rows, dim=dim, force=force)
|
||||
vector_type=vector_type, rows=rows, dim=dim, force=force)
|
||||
elif data_field == DataField.string_field: # string field for numpy not supported yet at 2022-10-17
|
||||
file_name = gen_string_in_numpy_file(dir=data_source, data_field=data_field, rows=rows, force=force)
|
||||
elif data_field == DataField.bool_field:
|
||||
|
|
|
@ -848,9 +848,11 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=100),
|
||||
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
|
||||
cf.gen_float_vec_field(name=df.float_vec_field, dim=dim),
|
||||
cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim)
|
||||
# cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
# cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim),
|
||||
cf.gen_bfloat16_vec_field(name=df.bf16_vec_field, dim=dim),
|
||||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim)
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
files = prepare_bulk_insert_new_json_files(
|
||||
|
@ -890,6 +892,10 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=index_params
|
||||
)
|
||||
for f in [df.bf16_vec_field, df.fp16_vec_field]:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params={"index_type": "FLAT", "metric_type": "COSINE"}
|
||||
)
|
||||
for f in binary_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=ct.default_binary_index
|
||||
|
@ -964,9 +970,11 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_string_field(name=df.string_field),
|
||||
cf.gen_json_field(name=df.json_field),
|
||||
cf.gen_float_vec_field(name=df.float_vec_field, dim=dim),
|
||||
cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim)
|
||||
# cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
# cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim),
|
||||
cf.gen_bfloat16_vec_field(name=df.bf16_vec_field, dim=dim),
|
||||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim)
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
files = prepare_bulk_insert_numpy_files(
|
||||
|
@ -1006,6 +1014,10 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=index_params
|
||||
)
|
||||
for f in [df.bf16_vec_field, df.fp16_vec_field]:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params={"index_type": "FLAT", "metric_type": "COSINE"}
|
||||
)
|
||||
for f in binary_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=ct.default_binary_index
|
||||
|
@ -1083,9 +1095,11 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=100),
|
||||
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
|
||||
cf.gen_float_vec_field(name=df.float_vec_field, dim=dim),
|
||||
cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim)
|
||||
# cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
# cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim),
|
||||
cf.gen_bfloat16_vec_field(name=df.bf16_vec_field, dim=dim),
|
||||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim)
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
files = prepare_bulk_insert_parquet_files(
|
||||
|
@ -1125,6 +1139,10 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=index_params
|
||||
)
|
||||
for f in [df.bf16_vec_field, df.fp16_vec_field]:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params={"index_type": "FLAT", "metric_type": "COSINE"}
|
||||
)
|
||||
for f in binary_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=ct.default_binary_index
|
||||
|
|
Loading…
Reference in New Issue