mirror of https://github.com/milvus-io/milvus.git
test: add hybrid search cases (#29830)
issue: #29799 Signed-off-by: binbin lv <binbin.lv@zilliz.com>pull/30684/head
parent
43e8cd531d
commit
a556671119
|
@ -229,7 +229,9 @@ class TestcaseBase(Base):
|
|||
partition_num=0, is_binary=False, is_all_data_type=False,
|
||||
auto_id=False, dim=ct.default_dim, is_index=True,
|
||||
primary_field=ct.default_int64_field_name, is_flush=True, name=None,
|
||||
enable_dynamic_field=False, with_json=True, random_primary_key=False, **kwargs):
|
||||
enable_dynamic_field=False, with_json=True, random_primary_key=False,
|
||||
multiple_dim_array=[], is_partition_key=None, vector_data_type="FLOAT_VECTOR",
|
||||
**kwargs):
|
||||
"""
|
||||
target: create specified collections
|
||||
method: 1. create collections (binary/non-binary, default/all data type, auto_id or not)
|
||||
|
@ -251,7 +253,9 @@ class TestcaseBase(Base):
|
|||
# 1 create collection
|
||||
default_schema = cf.gen_default_collection_schema(auto_id=auto_id, dim=dim, primary_field=primary_field,
|
||||
enable_dynamic_field=enable_dynamic_field,
|
||||
with_json=with_json)
|
||||
with_json=with_json, multiple_dim_array=multiple_dim_array,
|
||||
is_partition_key=is_partition_key,
|
||||
vector_data_type=vector_data_type)
|
||||
if is_binary:
|
||||
default_schema = cf.gen_default_binary_collection_schema(auto_id=auto_id, dim=dim,
|
||||
primary_field=primary_field)
|
||||
|
@ -262,6 +266,7 @@ class TestcaseBase(Base):
|
|||
with_json=with_json)
|
||||
log.info("init_collection_general: collection creation")
|
||||
collection_w = self.init_collection_wrap(name=collection_name, schema=default_schema, **kwargs)
|
||||
vector_name_list = cf.extract_vector_field_name_list(collection_w)
|
||||
# 2 add extra partitions if specified (default is 1 partition named "_default")
|
||||
if partition_num > 0:
|
||||
cf.gen_partitions(collection_w, partition_num)
|
||||
|
@ -270,22 +275,22 @@ class TestcaseBase(Base):
|
|||
collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp = \
|
||||
cf.insert_data(collection_w, nb, is_binary, is_all_data_type, auto_id=auto_id,
|
||||
dim=dim, enable_dynamic_field=enable_dynamic_field, with_json=with_json,
|
||||
random_primary_key=random_primary_key)
|
||||
random_primary_key=random_primary_key, multiple_dim_array=multiple_dim_array,
|
||||
primary_field=primary_field, vector_data_type=vector_data_type)
|
||||
if is_flush:
|
||||
assert collection_w.is_empty is False
|
||||
assert collection_w.num_entities == nb
|
||||
# 4 create default index if specified
|
||||
if is_index:
|
||||
# This condition will be removed after auto index feature
|
||||
if is_index:
|
||||
if is_binary:
|
||||
collection_w.create_index(ct.default_binary_vec_field_name, ct.default_bin_flat_index)
|
||||
else:
|
||||
collection_w.create_index(ct.default_float_vec_field_name, ct.default_flat_index)
|
||||
collection_w.load()
|
||||
elif is_index:
|
||||
if is_binary:
|
||||
collection_w.create_index(ct.default_binary_vec_field_name, ct.default_bin_flat_index)
|
||||
else:
|
||||
collection_w.create_index(ct.default_float_vec_field_name, ct.default_flat_index)
|
||||
if len(multiple_dim_array) != 0 or is_all_data_type:
|
||||
for vector_name in vector_name_list:
|
||||
collection_w.create_index(vector_name, ct.default_flat_index)
|
||||
collection_w.load()
|
||||
|
||||
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
|
||||
|
||||
|
|
|
@ -176,6 +176,22 @@ class ApiCollectionWrapper:
|
|||
timeout=timeout, **kwargs).run()
|
||||
return res, check_result
|
||||
|
||||
@trace()
|
||||
def hybrid_search(self, reqs, rerank, limit, partition_names=None,
|
||||
output_fields=None, timeout=None, round_decimal=-1,
|
||||
check_task=None, check_items=None, **kwargs):
|
||||
timeout = TIMEOUT if timeout is None else timeout
|
||||
|
||||
func_name = sys._getframe().f_code.co_name
|
||||
res, check = api_request([self.collection.hybrid_search, reqs, rerank, limit, partition_names,
|
||||
output_fields, timeout, round_decimal], **kwargs)
|
||||
check_result = ResponseChecker(res, func_name, check_task, check_items, check,
|
||||
reqs=reqs, rerank=rerank, limit=limit,
|
||||
partition_names=partition_names,
|
||||
output_fields=output_fields,
|
||||
timeout=timeout, **kwargs).run()
|
||||
return res, check_result
|
||||
|
||||
@trace()
|
||||
def search_iterator(self, data, anns_field, param, batch_size, limit=-1, expr=None,
|
||||
partition_names=None, output_fields=None, timeout=None, round_decimal=-1,
|
||||
|
|
|
@ -293,8 +293,8 @@ class ResponseChecker:
|
|||
expected: check the search is ok
|
||||
"""
|
||||
log.info("search_results_check: checking the searching results")
|
||||
if func_name != 'search':
|
||||
log.warning("The function name is {} rather than {}".format(func_name, "search"))
|
||||
if func_name != 'search' or func_name != 'hybrid_search':
|
||||
log.warning("The function name is {} rather than {} or {}".format(func_name, "search", "hybrid_search"))
|
||||
if len(check_items) == 0:
|
||||
raise Exception("No expect values found in the check task")
|
||||
if check_items.get("_async", None):
|
||||
|
|
|
@ -18,6 +18,7 @@ from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrappe
|
|||
from common import common_type as ct
|
||||
from utils.util_log import test_log as log
|
||||
from customize.milvus_operator import MilvusOperator
|
||||
import tensorflow as tf
|
||||
fake = Faker()
|
||||
"""" Methods of processing data """
|
||||
|
||||
|
@ -142,8 +143,14 @@ def gen_double_field(name=ct.default_double_field_name, is_primary=False, descri
|
|||
|
||||
|
||||
def gen_float_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||||
description=ct.default_desc, **kwargs):
|
||||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT_VECTOR,
|
||||
description=ct.default_desc, vector_data_type="FLOAT_VECTOR", **kwargs):
|
||||
if vector_data_type == "FLOAT_VECTOR":
|
||||
dtype = DataType.FLOAT_VECTOR
|
||||
elif vector_data_type == "FLOAT16_VECTOR":
|
||||
dtype = DataType.FLOAT16_VECTOR
|
||||
elif vector_data_type == "BFLOAT16_VECTOR":
|
||||
dtype = DataType.BFLOAT16_VECTOR
|
||||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=dtype,
|
||||
description=description, dim=dim,
|
||||
is_primary=is_primary, **kwargs)
|
||||
return float_vec_field
|
||||
|
@ -157,28 +164,60 @@ def gen_binary_vec_field(name=ct.default_binary_vec_field_name, is_primary=False
|
|||
return binary_vec_field
|
||||
|
||||
|
||||
def gen_float16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||||
description=ct.default_desc, **kwargs):
|
||||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT16_VECTOR,
|
||||
description=description, dim=dim,
|
||||
is_primary=is_primary, **kwargs)
|
||||
return float_vec_field
|
||||
|
||||
|
||||
def gen_bfloat16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||||
description=ct.default_desc, **kwargs):
|
||||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BFLOAT16_VECTOR,
|
||||
description=description, dim=dim,
|
||||
is_primary=is_primary, **kwargs)
|
||||
return float_vec_field
|
||||
|
||||
|
||||
|
||||
def gen_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||||
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True,
|
||||
multiple_dim_array=[], **kwargs):
|
||||
multiple_dim_array=[], is_partition_key=None, vector_data_type="FLOAT_VECTOR",
|
||||
**kwargs):
|
||||
if enable_dynamic_field:
|
||||
if primary_field is ct.default_int64_field_name:
|
||||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim)]
|
||||
if is_partition_key is None:
|
||||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim, vector_data_type=vector_data_type)]
|
||||
else:
|
||||
fields = [gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name)),
|
||||
gen_float_vec_field(dim=dim, vector_data_type=vector_data_type)]
|
||||
elif primary_field is ct.default_string_field_name:
|
||||
fields = [gen_string_field(), gen_float_vec_field(dim=dim)]
|
||||
if is_partition_key is None:
|
||||
fields = [gen_string_field(), gen_float_vec_field(dim=dim, vector_data_type=vector_data_type)]
|
||||
else:
|
||||
fields = [gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name)),
|
||||
gen_float_vec_field(dim=dim, vector_data_type=vector_data_type)]
|
||||
else:
|
||||
log.error("Primary key only support int or varchar")
|
||||
assert False
|
||||
if len(multiple_dim_array) != 0:
|
||||
for other_dim in multiple_dim_array:
|
||||
fields.append(gen_float_vec_field(gen_unique_str("multiple_vector"), dim=other_dim))
|
||||
else:
|
||||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(),
|
||||
gen_float_vec_field(dim=dim)]
|
||||
if is_partition_key is None:
|
||||
int64_field = gen_int64_field()
|
||||
vchar_field = gen_string_field()
|
||||
else:
|
||||
int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name))
|
||||
vchar_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name))
|
||||
fields = [int64_field, gen_float_field(), vchar_field, gen_json_field(),
|
||||
gen_float_vec_field(dim=dim, vector_data_type=vector_data_type)]
|
||||
if with_json is False:
|
||||
fields.remove(gen_json_field())
|
||||
if len(multiple_dim_array) != 0:
|
||||
for other_dim in multiple_dim_array:
|
||||
fields.append(gen_float_vec_field(gen_unique_str("multiple_vector"), dim=other_dim))
|
||||
|
||||
if len(multiple_dim_array) != 0:
|
||||
for other_dim in multiple_dim_array:
|
||||
fields.append(gen_float_vec_field(gen_unique_str("multiple_vector"), dim=other_dim,
|
||||
vector_data_type=vector_data_type))
|
||||
|
||||
|
||||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||||
primary_field=primary_field, auto_id=auto_id,
|
||||
|
@ -278,11 +317,15 @@ def gen_collection_schema_all_datatype(description=ct.default_desc,
|
|||
auto_id=False, dim=ct.default_dim,
|
||||
enable_dynamic_field=False, with_json=True, **kwargs):
|
||||
if enable_dynamic_field:
|
||||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim)]
|
||||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim),
|
||||
gen_float_vec_field(name=ct.default_float16_vec_field_name, dim=dim, vector_data_type="FLOAT16_VECTOR"),
|
||||
gen_float_vec_field(name=ct.default_bfloat16_vec_field_name, dim=dim, vector_data_type="BFLOAT16_VECTOR")]
|
||||
else:
|
||||
fields = [gen_int64_field(), gen_int32_field(), gen_int16_field(), gen_int8_field(),
|
||||
gen_bool_field(), gen_float_field(), gen_double_field(), gen_string_field(),
|
||||
gen_json_field(), gen_float_vec_field(dim=dim)]
|
||||
gen_json_field(), gen_float_vec_field(dim=dim),
|
||||
gen_float_vec_field(name=ct.default_float16_vec_field_name, dim=dim, vector_data_type="FLOAT16_VECTOR"),
|
||||
gen_float_vec_field(name=ct.default_bfloat16_vec_field_name, dim=dim, vector_data_type="BFLOAT16_VECTOR")]
|
||||
if with_json is False:
|
||||
fields.remove(gen_json_field())
|
||||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||||
|
@ -324,11 +367,18 @@ def gen_schema_multi_string_fields(string_fields):
|
|||
return schema
|
||||
|
||||
|
||||
def gen_vectors(nb, dim):
|
||||
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
|
||||
def gen_vectors(nb, dim, vector_data_type="FLOAT_VECTOR"):
|
||||
if vector_data_type == "FLOAT_VECTOR":
|
||||
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
|
||||
elif vector_data_type == "FLOAT16_VECTOR":
|
||||
vectors = gen_fp16_vectors(nb, dim)[1]
|
||||
elif vector_data_type == "BFLOAT16_VECTOR":
|
||||
vectors = gen_bf16_vectors(nb, dim)[1]
|
||||
|
||||
if dim > 1:
|
||||
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
|
||||
vectors = vectors.tolist()
|
||||
if vector_data_type=="FLOAT_VECTOR":
|
||||
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
|
||||
vectors = vectors.tolist()
|
||||
return vectors
|
||||
|
||||
|
||||
|
@ -349,7 +399,8 @@ def gen_binary_vectors(num, dim):
|
|||
|
||||
|
||||
def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
|
||||
random_primary_key=False):
|
||||
random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[],
|
||||
vector_data_type="FLOAT_VECTOR"):
|
||||
if not random_primary_key:
|
||||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||||
else:
|
||||
|
@ -357,7 +408,7 @@ def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, wi
|
|||
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
|
||||
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
|
||||
json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)]
|
||||
float_vec_values = gen_vectors(nb, dim)
|
||||
float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type)
|
||||
df = pd.DataFrame({
|
||||
ct.default_int64_field_name: int_values,
|
||||
ct.default_float_field_name: float_values,
|
||||
|
@ -365,24 +416,38 @@ def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, wi
|
|||
ct.default_json_field_name: json_values,
|
||||
ct.default_float_vec_field_name: float_vec_values
|
||||
})
|
||||
|
||||
if with_json is False:
|
||||
df.drop(ct.default_json_field_name, axis=1, inplace=True)
|
||||
if len(multiple_dim_array) != 0:
|
||||
if len(multiple_vector_field_name) != len(multiple_dim_array):
|
||||
log.error("multiple vector feature is enabled, please input the vector field name list "
|
||||
"not including the default vector field")
|
||||
assert len(multiple_vector_field_name) == len(multiple_dim_array)
|
||||
for i in range(len(multiple_dim_array)):
|
||||
new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type)
|
||||
df[multiple_vector_field_name[i]] = new_float_vec_values
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def gen_default_rows_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True):
|
||||
def gen_default_rows_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, multiple_dim_array=[],
|
||||
multiple_vector_field_name=[], vector_data_type="FLOAT_VECTOR"):
|
||||
array = []
|
||||
for i in range(start, start + nb):
|
||||
dict = {ct.default_int64_field_name: i,
|
||||
ct.default_float_field_name: i*1.0,
|
||||
ct.default_string_field_name: str(i),
|
||||
ct.default_json_field_name: {"number": i, "float": i*1.0},
|
||||
ct.default_float_vec_field_name: gen_vectors(1, dim)[0]
|
||||
ct.default_float_vec_field_name: gen_vectors(1, dim, vector_data_type=vector_data_type)[0]
|
||||
}
|
||||
if with_json is False:
|
||||
dict.pop(ct.default_json_field_name, None)
|
||||
array.append(dict)
|
||||
if len(multiple_dim_array) != 0:
|
||||
for i in range(len(multiple_dim_array)):
|
||||
dict[multiple_vector_field_name[i]] = gen_vectors(1, multiple_dim_array[i],
|
||||
vector_data_type=vector_data_type)[0]
|
||||
|
||||
return array
|
||||
|
||||
|
@ -497,6 +562,8 @@ def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, w
|
|||
json_values = [{"number": i, "string": str(i), "bool": bool(i),
|
||||
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)]
|
||||
float_vec_values = gen_vectors(nb, dim)
|
||||
float16_vec_values = gen_vectors(nb, dim, "FLOAT16_VECTOR")
|
||||
bfloat16_vec_values = gen_vectors(nb, dim, "BFLOAT16_VECTOR")
|
||||
df = pd.DataFrame({
|
||||
ct.default_int64_field_name: int64_values,
|
||||
ct.default_int32_field_name: int32_values,
|
||||
|
@ -507,8 +574,9 @@ def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, w
|
|||
ct.default_double_field_name: double_values,
|
||||
ct.default_string_field_name: string_values,
|
||||
ct.default_json_field_name: json_values,
|
||||
ct.default_float_vec_field_name: float_vec_values
|
||||
|
||||
ct.default_float_vec_field_name: float_vec_values,
|
||||
ct.default_float16_vec_field_name: float16_vec_values,
|
||||
ct.default_bfloat16_vec_field_name: bfloat16_vec_values
|
||||
})
|
||||
if with_json is False:
|
||||
df.drop(ct.default_json_field_name, axis=1, inplace=True)
|
||||
|
@ -531,7 +599,9 @@ def gen_default_rows_data_all_data_type(nb=ct.default_nb, dim=ct.default_dim, st
|
|||
ct.default_string_field_name: str(i),
|
||||
ct.default_json_field_name: {"number": i, "string": str(i), "bool": bool(i),
|
||||
"list": [j for j in range(i, i + ct.default_json_list_length)]},
|
||||
ct.default_float_vec_field_name: gen_vectors(1, dim)[0]
|
||||
ct.default_float_vec_field_name: gen_vectors(1, dim)[0],
|
||||
ct.default_float16_vec_field_name: gen_vectors(1, dim, "FLOAT16_VECTOR")[0],
|
||||
ct.default_bfloat16_vec_field_name: gen_vectors(1, dim, "BFLOAT16_VECTOR")[0]
|
||||
}
|
||||
if with_json is False:
|
||||
dict.pop(ct.default_json_field_name, None)
|
||||
|
@ -1384,7 +1454,8 @@ def gen_partitions(collection_w, partition_num=1):
|
|||
|
||||
def insert_data(collection_w, nb=ct.default_nb, is_binary=False, is_all_data_type=False,
|
||||
auto_id=False, dim=ct.default_dim, insert_offset=0, enable_dynamic_field=False, with_json=True,
|
||||
random_primary_key=False):
|
||||
random_primary_key=False, multiple_dim_array=[], primary_field=ct.default_int64_field_name,
|
||||
vector_data_type="FLOAT_VECTOR"):
|
||||
"""
|
||||
target: insert non-binary/binary data
|
||||
method: insert non-binary/binary data into partitions if any
|
||||
|
@ -1396,13 +1467,23 @@ def insert_data(collection_w, nb=ct.default_nb, is_binary=False, is_all_data_typ
|
|||
binary_raw_vectors = []
|
||||
insert_ids = []
|
||||
start = insert_offset
|
||||
log.info(f"inserted {nb} data into collection {collection_w.name}")
|
||||
log.info(f"inserting {nb} data into collection {collection_w.name}")
|
||||
# extract the vector field name list
|
||||
vector_name_list = extract_vector_field_name_list(collection_w)
|
||||
# prepare data
|
||||
for i in range(num):
|
||||
log.debug("Dynamic field is enabled: %s" % enable_dynamic_field)
|
||||
default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start, with_json=with_json,
|
||||
random_primary_key=random_primary_key)
|
||||
if enable_dynamic_field:
|
||||
default_data = gen_default_rows_data(nb // num, dim=dim, start=start, with_json=with_json)
|
||||
if not enable_dynamic_field:
|
||||
default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start, with_json=with_json,
|
||||
random_primary_key=random_primary_key,
|
||||
multiple_dim_array=multiple_dim_array,
|
||||
multiple_vector_field_name=vector_name_list,
|
||||
vector_data_type=vector_data_type)
|
||||
else:
|
||||
default_data = gen_default_rows_data(nb // num, dim=dim, start=start, with_json=with_json,
|
||||
multiple_dim_array=multiple_dim_array,
|
||||
multiple_vector_field_name=vector_name_list,
|
||||
vector_data_type=vector_data_type)
|
||||
if is_binary:
|
||||
default_data, binary_raw_data = gen_default_binary_dataframe_data(nb // num, dim=dim, start=start)
|
||||
binary_raw_vectors.extend(binary_raw_data)
|
||||
|
@ -1414,10 +1495,18 @@ def insert_data(collection_w, nb=ct.default_nb, is_binary=False, is_all_data_typ
|
|||
if auto_id:
|
||||
if enable_dynamic_field:
|
||||
for data in default_data:
|
||||
data.pop(ct.default_int64_field_name, None)
|
||||
if primary_field == ct.default_int64_field_name:
|
||||
data.pop(ct.default_int64_field_name, None)
|
||||
elif primary_field == ct.default_string_field_name:
|
||||
data.pop(ct.default_string_field_name, None)
|
||||
else:
|
||||
default_data.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||||
if primary_field == ct.default_int64_field_name:
|
||||
default_data.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||||
elif primary_field == ct.default_string_field_name:
|
||||
default_data.drop(ct.default_string_field_name, axis=1, inplace=True)
|
||||
# insert
|
||||
insert_res = collection_w.insert(default_data, par[i].name)[0]
|
||||
log.info(f"inserted {nb} data into collection {collection_w.name}")
|
||||
time_stamp = insert_res.timestamp
|
||||
insert_ids.extend(insert_res.primary_keys)
|
||||
vectors.append(default_data)
|
||||
|
@ -1559,3 +1648,104 @@ def get_wildcard_output_field_names(collection_w, output_fields):
|
|||
output_fields.remove("*")
|
||||
output_fields.extend(all_fields)
|
||||
return output_fields
|
||||
|
||||
|
||||
def extract_vector_field_name_list(collection_w):
|
||||
"""
|
||||
extract the vector field name list
|
||||
collection_w : the collection object to be extracted thea name of all the vector fields
|
||||
return: the vector field name list without the default float vector field name
|
||||
"""
|
||||
schema_dict = collection_w.schema.to_dict()
|
||||
fields = schema_dict.get('fields')
|
||||
vector_name_list = []
|
||||
for field in fields:
|
||||
if str(field['type']) == 'DataType.FLOAT_VECTOR' \
|
||||
or str(field['type']) == 'DataType.FLOAT16_VECTOR' \
|
||||
or str(field['type']) == 'DataType.BFLOAT16_VECTOR':
|
||||
if field['name'] != ct.default_float_vec_field_name:
|
||||
vector_name_list.append(field['name'])
|
||||
|
||||
return vector_name_list
|
||||
|
||||
|
||||
def get_hybrid_search_base_results(search_res_dict_array):
|
||||
"""
|
||||
merge the element in the dicts array
|
||||
search_res_dict_array : the dict array in which the elements to be merged
|
||||
return: the sorted id and score answer
|
||||
"""
|
||||
# calculate hybrid search base line
|
||||
search_res_dict_merge = {}
|
||||
ids_answer = []
|
||||
score_answer = []
|
||||
for i in range(len(search_res_dict_array) - 1):
|
||||
for key in search_res_dict_array[i]:
|
||||
if search_res_dict_array[i + 1].get(key):
|
||||
search_res_dict_merge[key] = search_res_dict_array[i][key] + search_res_dict_array[i + 1][key]
|
||||
else:
|
||||
search_res_dict_merge[key] = search_res_dict_array[i][key]
|
||||
for key in search_res_dict_array[i + 1]:
|
||||
if not search_res_dict_array[i].get(key):
|
||||
search_res_dict_merge[key] = search_res_dict_array[i + 1][key]
|
||||
sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True)
|
||||
|
||||
for sort in sorted_list:
|
||||
ids_answer.append(int(sort[0]))
|
||||
score_answer.append(float(sort[1]))
|
||||
|
||||
return ids_answer, score_answer
|
||||
|
||||
|
||||
def gen_bf16_vectors(num, dim):
|
||||
"""
|
||||
generate brain float16 vector data
|
||||
raw_vectors : the vectors
|
||||
bf16_vectors: the bytes used for insert
|
||||
return: raw_vectors and bf16_vectors
|
||||
"""
|
||||
raw_vectors = []
|
||||
bf16_vectors = []
|
||||
for _ in range(num):
|
||||
raw_vector = [random.random() for _ in range(dim)]
|
||||
raw_vectors.append(raw_vector)
|
||||
# bf16_vector = np.array(raw_vector, dtype=tf.bfloat16).view(np.uint8).tolist()
|
||||
bf16_vector = tf.cast(raw_vector, dtype=tf.bfloat16).numpy().view(np.uint8).tolist()
|
||||
bf16_vectors.append(bytes(bf16_vector))
|
||||
|
||||
return raw_vectors, bf16_vectors
|
||||
|
||||
|
||||
def gen_fp16_vectors(num, dim):
|
||||
"""
|
||||
generate float16 vector data
|
||||
raw_vectors : the vectors
|
||||
fp16_vectors: the bytes used for insert
|
||||
return: raw_vectors and fp16_vectors
|
||||
"""
|
||||
raw_vectors = []
|
||||
fp16_vectors = []
|
||||
for _ in range(num):
|
||||
raw_vector = [random.random() for _ in range(dim)]
|
||||
raw_vectors.append(raw_vector)
|
||||
fp16_vector = np.array(raw_vector, dtype=np.float16).view(np.uint8).tolist()
|
||||
fp16_vectors.append(bytes(fp16_vector))
|
||||
|
||||
return raw_vectors, fp16_vectors
|
||||
|
||||
|
||||
def gen_vectors_based_on_vector_type(num, dim, vector_data_type):
|
||||
"""
|
||||
generate float16 vector data
|
||||
raw_vectors : the vectors
|
||||
fp16_vectors: the bytes used for insert
|
||||
return: raw_vectors and fp16_vectors
|
||||
"""
|
||||
if vector_data_type == "FLOAT_VECTOR":
|
||||
vectors = [[random.random() for _ in range(dim)] for _ in range(num)]
|
||||
elif vector_data_type == "FLOAT16_VECTOR":
|
||||
vectors = gen_fp16_vectors(num, dim)[1]
|
||||
elif vector_data_type == "BFLOAT16_VECTOR":
|
||||
vectors = gen_bf16_vectors(num, dim)[1]
|
||||
|
||||
return vectors
|
|
@ -44,6 +44,8 @@ default_int32_array_field_name = "int32_array"
|
|||
default_float_array_field_name = "float_array"
|
||||
default_string_array_field_name = "string_array"
|
||||
default_float_vec_field_name = "float_vector"
|
||||
default_float16_vec_field_name = "float16_vector"
|
||||
default_bfloat16_vec_field_name = "bfloat16_vector"
|
||||
another_float_vec_field_name = "float_vector1"
|
||||
default_binary_vec_field_name = "binary_vector"
|
||||
default_partition_name = "_default"
|
||||
|
@ -81,6 +83,7 @@ default_db = "default"
|
|||
max_database_num = 64
|
||||
max_collections_per_db = 65536
|
||||
max_collection_num = 65536
|
||||
max_hybrid_search_req_num = 1024
|
||||
|
||||
|
||||
IMAGE_REPOSITORY_MILVUS = "harbor.milvus.io/dockerhub/milvusdb/milvus"
|
||||
|
|
|
@ -53,3 +53,6 @@ deepdiff==6.7.1
|
|||
prettytable==3.8.0
|
||||
pyarrow==14.0.1
|
||||
fastparquet==2023.7.0
|
||||
|
||||
# for generating bfloat16 data
|
||||
tensorflow==2.13.1
|
||||
|
|
|
@ -1252,6 +1252,14 @@ class TestIndexInvalid(TestcaseBase):
|
|||
Test create / describe / drop index interfaces with invalid collection names
|
||||
"""
|
||||
|
||||
@pytest.fixture(scope="function", params=["Trie", "STL_SORT", "INVERTED"])
|
||||
def scalar_index(self, request):
|
||||
yield request.param
|
||||
|
||||
@pytest.fixture(scope="function", params=["FLOAT_VECTOR", "FLOAT16_VECTOR", "BFLOAT16_VECTOR"])
|
||||
def vector_data_type(self, request):
|
||||
yield request.param
|
||||
|
||||
@pytest.fixture(
|
||||
scope="function",
|
||||
params=gen_invalid_strs()
|
||||
|
@ -1346,6 +1354,107 @@ class TestIndexInvalid(TestcaseBase):
|
|||
check_items={ct.err_code: 1100,
|
||||
ct.err_msg: "create index on JSON field is not supported"})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_create_scalar_index_on_vector_field(self, scalar_index, vector_data_type):
|
||||
"""
|
||||
target: test create scalar index on vector field
|
||||
method: 1.create collection, and create index
|
||||
expected: Raise exception
|
||||
"""
|
||||
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
||||
dim=ct.default_dim, is_index=False,
|
||||
vector_data_type=vector_data_type)[0:4]
|
||||
scalar_index_params = {"index_type": scalar_index}
|
||||
collection_w.create_index(ct.default_float_vec_field_name, index_params=scalar_index_params,
|
||||
check_task=CheckTasks.err_res,
|
||||
check_items={ct.err_code: 65535,
|
||||
ct.err_msg: f"invalid index type: {scalar_index}"})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_create_scalar_index_on_binary_vector_field(self, scalar_index):
|
||||
"""
|
||||
target: test create scalar index on binary vector field
|
||||
method: 1.create collection, and create index
|
||||
expected: Raise exception
|
||||
"""
|
||||
collection_w = self.init_collection_general(prefix, is_binary=True, is_index=False)[0]
|
||||
scalar_index_params = {"index_type": scalar_index}
|
||||
collection_w.create_index(ct.default_binary_vec_field_name, index_params=scalar_index_params,
|
||||
check_task=CheckTasks.err_res,
|
||||
check_items={ct.err_code: 65535,
|
||||
ct.err_msg: f"invalid index type: {scalar_index}"})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_create_inverted_index_on_json_field(self, vector_data_type):
|
||||
"""
|
||||
target: test create scalar index on json field
|
||||
method: 1.create collection, and create index
|
||||
expected: Raise exception
|
||||
"""
|
||||
collection_w = self.init_collection_general(prefix, is_index=False, vector_data_type=vector_data_type)[0]
|
||||
scalar_index_params = {"index_type": "INVERTED"}
|
||||
collection_w.create_index(ct.default_json_field_name, index_params=scalar_index_params,
|
||||
check_task=CheckTasks.err_res,
|
||||
check_items={ct.err_code: 1100,
|
||||
ct.err_msg: "create index on JSON field is not supported"})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_create_inverted_index_on_array_field(self):
|
||||
"""
|
||||
target: test create scalar index on array field
|
||||
method: 1.create collection, and create index
|
||||
expected: Raise exception
|
||||
"""
|
||||
# 1. create a collection
|
||||
schema = cf.gen_array_collection_schema()
|
||||
collection_w = self.init_collection_wrap(schema=schema)
|
||||
# 2. create index
|
||||
scalar_index_params = {"index_type": "INVERTED"}
|
||||
collection_w.create_index(ct.default_int32_array_field_name, index_params=scalar_index_params,
|
||||
check_task=CheckTasks.err_res,
|
||||
check_items={ct.err_code: 1100,
|
||||
ct.err_msg: "create index on Array field is not supported"})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_create_inverted_index_no_vector_index(self):
|
||||
"""
|
||||
target: test create scalar index on array field
|
||||
method: 1.create collection, and create index
|
||||
expected: Raise exception
|
||||
"""
|
||||
# 1. create a collection
|
||||
collection_w = self.init_collection_general(prefix, is_index=False)[0]
|
||||
# 2. create index
|
||||
scalar_index_params = {"index_type": "INVERTED"}
|
||||
collection_w.create_index(ct.default_float_field_name, index_params=scalar_index_params)
|
||||
collection_w.load(check_task=CheckTasks.err_res,
|
||||
check_items={ct.err_code: 65535,
|
||||
ct.err_msg: "there is no vector index on field: [float_vector], "
|
||||
"please create index firstly"})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("scalar_index", ["STL_SORT", "INVERTED"])
|
||||
def test_create_inverted_index_no_all_vector_index(self, scalar_index):
|
||||
"""
|
||||
target: test create scalar index on array field
|
||||
method: 1.create collection, and create index
|
||||
expected: Raise exception
|
||||
"""
|
||||
# 1. create a collection
|
||||
multiple_dim_array = [ct.default_dim, ct.default_dim]
|
||||
collection_w = self.init_collection_general(prefix, is_index=False, multiple_dim_array=multiple_dim_array)[0]
|
||||
# 2. create index
|
||||
scalar_index_params = {"index_type": scalar_index}
|
||||
collection_w.create_index(ct.default_float_field_name, index_params=scalar_index_params)
|
||||
vector_name_list = cf.extract_vector_field_name_list(collection_w)
|
||||
flat_index = {"index_type": "FLAT", "params": {}, "metric_type": "L2"}
|
||||
collection_w.create_index(ct.default_float_vec_field_name, flat_index)
|
||||
collection_w.load(check_task=CheckTasks.err_res,
|
||||
check_items={ct.err_code: 65535,
|
||||
ct.err_msg: f"there is no vector index on field: "
|
||||
f"[{vector_name_list[0]} {vector_name_list[1]}], "
|
||||
f"please create index firstly"})
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.GPU)
|
||||
class TestNewIndexAsync(TestcaseBase):
|
||||
|
@ -2024,3 +2133,100 @@ class TestScaNNIndex(TestcaseBase):
|
|||
ct.err_msg: f"dimension must be able to be divided by 2, dimension: {dim}"}
|
||||
collection_w.create_index(default_field_name, index_params,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.GPU)
|
||||
class TestInvertedIndexValid(TestcaseBase):
|
||||
"""
|
||||
Test create / describe / drop index interfaces with inverted index
|
||||
"""
|
||||
|
||||
@pytest.fixture(scope="function", params=["Trie", "STL_SORT", "INVERTED"])
|
||||
def scalar_index(self, request):
|
||||
yield request.param
|
||||
|
||||
@pytest.fixture(scope="function", params=["FLOAT_VECTOR", "FLOAT16_VECTOR", "BFLOAT16_VECTOR"])
|
||||
def vector_data_type(self, request):
|
||||
yield request.param
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("scalar_field_name", [ct.default_int8_field_name, ct.default_int16_field_name,
|
||||
ct.default_int32_field_name, ct.default_int64_field_name,
|
||||
ct.default_float_field_name, ct.default_double_field_name,
|
||||
ct.default_string_field_name, ct.default_bool_field_name])
|
||||
def test_create_inverted_index_on_all_supported_scalar_field(self, scalar_field_name):
|
||||
"""
|
||||
target: test create scalar index all supported scalar field
|
||||
method: 1.create collection, and create index
|
||||
expected: create index successfully
|
||||
"""
|
||||
collection_w = self.init_collection_general(prefix, insert_data=True, is_index=False, is_all_data_type=True)[0]
|
||||
scalar_index_params = {"index_type": "INVERTED"}
|
||||
index_name = "scalar_index_name"
|
||||
collection_w.create_index(scalar_field_name, index_params=scalar_index_params, index_name=index_name)
|
||||
assert collection_w.has_index(index_name=index_name)[0] is True
|
||||
index_list = self.utility_wrap.list_indexes(collection_w.name)[0]
|
||||
assert index_name in index_list
|
||||
collection_w.flush()
|
||||
result = self.utility_wrap.index_building_progress(collection_w.name, index_name)[0]
|
||||
# assert False
|
||||
start = time.time()
|
||||
while True:
|
||||
time.sleep(1)
|
||||
res, _ = self.utility_wrap.index_building_progress(collection_w.name, index_name)
|
||||
if 0 < res['indexed_rows'] <= default_nb:
|
||||
break
|
||||
if time.time() - start > 5:
|
||||
raise MilvusException(1, f"Index build completed in more than 5s")
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
def test_create_multiple_inverted_index(self):
|
||||
"""
|
||||
target: test create multiple scalar index
|
||||
method: 1.create collection, and create index
|
||||
expected: create index successfully
|
||||
"""
|
||||
collection_w = self.init_collection_general(prefix, is_index=False, is_all_data_type=True)[0]
|
||||
scalar_index_params = {"index_type": "INVERTED"}
|
||||
index_name = "scalar_index_name_0"
|
||||
collection_w.create_index(ct.default_int8_field_name, index_params=scalar_index_params, index_name=index_name)
|
||||
assert collection_w.has_index(index_name=index_name)[0] is True
|
||||
index_name = "scalar_index_name_1"
|
||||
collection_w.create_index(ct.default_int32_field_name, index_params=scalar_index_params, index_name=index_name)
|
||||
assert collection_w.has_index(index_name=index_name)[0] is True
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
def test_create_all_inverted_index(self):
|
||||
"""
|
||||
target: test create multiple scalar index
|
||||
method: 1.create collection, and create index
|
||||
expected: create index successfully
|
||||
"""
|
||||
collection_w = self.init_collection_general(prefix, is_index=False, is_all_data_type=True)[0]
|
||||
scalar_index_params = {"index_type": "INVERTED"}
|
||||
scalar_fields = [ct.default_int8_field_name, ct.default_int16_field_name,
|
||||
ct.default_int32_field_name, ct.default_int64_field_name,
|
||||
ct.default_float_field_name, ct.default_double_field_name,
|
||||
ct.default_string_field_name, ct.default_bool_field_name]
|
||||
for i in range(len(scalar_fields)):
|
||||
index_name = f"scalar_index_name_{i}"
|
||||
collection_w.create_index(scalar_fields[i], index_params=scalar_index_params, index_name=index_name)
|
||||
assert collection_w.has_index(index_name=index_name)[0] is True
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
def test_create_all_scalar_index(self):
|
||||
"""
|
||||
target: test create multiple scalar index
|
||||
method: 1.create collection, and create index
|
||||
expected: create index successfully
|
||||
"""
|
||||
collection_w = self.init_collection_general(prefix, is_index=False, is_all_data_type=True)[0]
|
||||
scalar_index = ["Trie", "STL_SORT", "INVERTED"]
|
||||
scalar_fields = [ct.default_string_field_name, ct.default_int16_field_name,
|
||||
ct.default_int32_field_name]
|
||||
for i in range(len(scalar_fields)):
|
||||
index_name = f"scalar_index_name_{i}"
|
||||
scalar_index_params = {"index_type": f"{scalar_index[i]}"}
|
||||
collection_w.create_index(scalar_fields[i], index_params=scalar_index_params, index_name=index_name)
|
||||
assert collection_w.has_index(index_name=index_name)[0] is True
|
||||
|
|
|
@ -1333,12 +1333,14 @@ class TestQueryParams(TestcaseBase):
|
|||
assert set(res[0].keys()) == {ct.default_int64_field_name, ct.default_float_field_name}
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="issue 30437")
|
||||
def test_query_output_all_fields(self, enable_dynamic_field, random_primary_key):
|
||||
"""
|
||||
target: test query with none output field
|
||||
method: query with output field=None
|
||||
expected: return all fields
|
||||
"""
|
||||
enable_dynamic_field = False
|
||||
# 1. initialize with data
|
||||
collection_w, df, _, insert_ids = \
|
||||
self.init_collection_general(prefix, True, nb=10, is_all_data_type=True,
|
||||
|
@ -1347,7 +1349,8 @@ class TestQueryParams(TestcaseBase):
|
|||
all_fields = [ct.default_int64_field_name, ct.default_int32_field_name, ct.default_int16_field_name,
|
||||
ct.default_int8_field_name, ct.default_bool_field_name, ct.default_float_field_name,
|
||||
ct.default_double_field_name, ct.default_string_field_name, ct.default_json_field_name,
|
||||
ct.default_float_vec_field_name]
|
||||
ct.default_float_vec_field_name, ct.default_float16_vec_field_name,
|
||||
ct.default_bfloat16_vec_field_name]
|
||||
if enable_dynamic_field:
|
||||
res = df[0][:2]
|
||||
else:
|
||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue