mirror of https://github.com/milvus-io/milvus.git
test: Add tests for more json forms support (#31474)
related issue: #31051 Signed-off-by: yanliang567 <yanliang.qiao@zilliz.com>pull/31492/head
parent
1b31824f83
commit
a2fdebd90d
|
@ -474,6 +474,31 @@ def gen_default_rows_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_js
|
||||||
return array
|
return array
|
||||||
|
|
||||||
|
|
||||||
|
def gen_json_data_for_diff_json_types(nb=ct.default_nb, start=0, json_type="json_embedded_object"):
|
||||||
|
"""
|
||||||
|
Method: gen json data for different json types. Refer to RFC7159
|
||||||
|
"""
|
||||||
|
if json_type == "json_embedded_object": # a json object with an embedd json object
|
||||||
|
return [{json_type: {"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0}, "str": str(i)}
|
||||||
|
for i in range(start, start + nb)]
|
||||||
|
if json_type == "json_objects_array": # a json-objects array with 2 json objects
|
||||||
|
return [[{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)},
|
||||||
|
{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)}
|
||||||
|
] for i in range(start, start + nb)]
|
||||||
|
if json_type == "json_array": # single array as json value
|
||||||
|
return [[i for i in range(j, j + 10)] for j in range(start, start + nb)]
|
||||||
|
if json_type == "json_int": # single int as json value
|
||||||
|
return [i for i in range(start, start + nb)]
|
||||||
|
if json_type == "json_float": # single float as json value
|
||||||
|
return [i*1.0 for i in range(start, start + nb)]
|
||||||
|
if json_type == "json_string": # single string as json value
|
||||||
|
return [str(i) for i in range(start, start + nb)]
|
||||||
|
if json_type == "json_bool": # single bool as json value
|
||||||
|
return [bool(i) for i in range(start, start + nb)]
|
||||||
|
else:
|
||||||
|
return []
|
||||||
|
|
||||||
|
|
||||||
def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000):
|
def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000):
|
||||||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||||||
float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32")
|
float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32")
|
||||||
|
|
|
@ -3274,6 +3274,70 @@ class TestQueryCount(TestcaseBase):
|
||||||
check_task=CheckTasks.check_query_results,
|
check_task=CheckTasks.check_query_results,
|
||||||
check_items={exp_res: [{count: 50}]})
|
check_items={exp_res: [{count: 50}]})
|
||||||
|
|
||||||
|
@pytest.mark.tags(CaseLabel.L1)
|
||||||
|
def test_json_expr_on_search_n_query(self):
|
||||||
|
"""
|
||||||
|
target: verify more expressions of json object, json array and json texts are supported in search and query
|
||||||
|
method: 1. insert data with vectors and different json format
|
||||||
|
2. verify insert successfully
|
||||||
|
3. build index and load
|
||||||
|
4. search and query with different expressions
|
||||||
|
5. verify search and query successfully
|
||||||
|
expected: succeed
|
||||||
|
"""
|
||||||
|
# 1. initialize with data
|
||||||
|
c_name = cf.gen_unique_str()
|
||||||
|
json_int = "json_int"
|
||||||
|
json_float = "json_float"
|
||||||
|
json_string = "json_string"
|
||||||
|
json_bool = "json_bool"
|
||||||
|
json_array = "json_array"
|
||||||
|
json_embedded_object = "json_embedded_object"
|
||||||
|
json_objects_array = "json_objects_array"
|
||||||
|
dim = 16
|
||||||
|
fields = [cf.gen_int64_field(), cf.gen_float_vec_field(dim=dim),
|
||||||
|
cf.gen_json_field(json_int), cf.gen_json_field(json_float), cf.gen_json_field(json_string),
|
||||||
|
cf.gen_json_field(json_bool), cf.gen_json_field(json_array),
|
||||||
|
cf.gen_json_field(json_embedded_object), cf.gen_json_field(json_objects_array)]
|
||||||
|
schema = cf.gen_collection_schema(fields=fields, primary_field=ct.default_int64_field_name, auto_id=True)
|
||||||
|
collection_w = self.init_collection_wrap(name=c_name, schema=schema)
|
||||||
|
|
||||||
|
# 2. insert data
|
||||||
|
nb = 500
|
||||||
|
for i in range(10):
|
||||||
|
data = [
|
||||||
|
cf.gen_vectors(nb, dim),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_int),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_float),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_string),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_bool),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_array),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_embedded_object),
|
||||||
|
cf.gen_json_data_for_diff_json_types(nb=nb, start=i*nb, json_type=json_objects_array)
|
||||||
|
]
|
||||||
|
collection_w.insert(data)
|
||||||
|
|
||||||
|
# 3. build index and load
|
||||||
|
collection_w.create_index(ct.default_float_vec_field_name, index_params=default_index_params)
|
||||||
|
collection_w.load()
|
||||||
|
|
||||||
|
# 4. search and query with different expressions. All the expressions will return 10 results
|
||||||
|
query_exprs = [f'{json_int} < 10 ', f'{json_float} <= 200.0 and {json_float} > 190.0',
|
||||||
|
f'{json_string} in ["1","2","3","4","5","6","7","8","9","10"]',
|
||||||
|
f'{json_bool} == true and {json_float} <= 10',
|
||||||
|
f'{json_array} == [4001,4002,4003,4004,4005,4006,4007,4008,4009,4010] or {json_int} < 9',
|
||||||
|
f'{json_embedded_object}["{json_embedded_object}"]["number"] < 10',
|
||||||
|
f'{json_objects_array}[0]["level2"]["level2_str"] like "99%" and {json_objects_array}[1]["float"] > 100']
|
||||||
|
search_data = cf.gen_vectors(2, dim)
|
||||||
|
search_param = {}
|
||||||
|
for expr in query_exprs:
|
||||||
|
collection_w.query(expr=expr, output_fields=[count],
|
||||||
|
check_task=CheckTasks.check_query_results, check_items={exp_res: [{count: 10}]})
|
||||||
|
collection_w.search(data=search_data, anns_field=ct.default_float_vec_field_name,
|
||||||
|
param=search_param, limit=10, expr=expr,
|
||||||
|
check_task=CheckTasks.check_search_results,
|
||||||
|
check_items={"nq": 2, "limit": 10})
|
||||||
|
|
||||||
@pytest.mark.tags(CaseLabel.L2)
|
@pytest.mark.tags(CaseLabel.L2)
|
||||||
def test_count_with_pagination_param(self):
|
def test_count_with_pagination_param(self):
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue