Update knowhere (#5006)

Import performance of ivf::train and hnsw, and fix bugs
Signed-off-by: shengjun.li <shengjun.li@zilliz.com>
pull/5018/head
shengjun.li 2021-04-23 18:03:49 +08:00 committed by GitHub
parent 7aaae3f98c
commit a2875f9d95
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 324 additions and 1460 deletions

View File

@ -27,6 +27,7 @@ namespace knowhere {
static const int64_t MIN_NBITS = 1;
static const int64_t MAX_NBITS = 16;
static const int64_t DEFAULT_NBITS = 8;
static const int64_t MIN_NLIST = 1;
static const int64_t MAX_NLIST = 65536;
static const int64_t MIN_NPROBE = 1;
@ -91,7 +92,7 @@ ConfAdapter::CheckSearch(Config& oricfg, const IndexType type, const IndexMode m
int64_t
MatchNlist(int64_t size, int64_t nlist) {
const int64_t MIN_POINTS_PER_CENTROID = 40;
const int64_t MIN_POINTS_PER_CENTROID = 39;
if (nlist * MIN_POINTS_PER_CENTROID > size) {
// nlist is too large, adjust to a proper value
@ -146,9 +147,7 @@ IVFConfAdapter::CheckSearch(Config& oricfg, const IndexType type, const IndexMod
bool
IVFSQConfAdapter::CheckTrain(Config& oricfg, const IndexMode mode) {
const int64_t DEFAULT_NBITS = 8;
oricfg[knowhere::IndexParams::nbits] = DEFAULT_NBITS;
return IVFConfAdapter::CheckTrain(oricfg, mode);
}
@ -161,7 +160,7 @@ IVFPQConfAdapter::CheckTrain(Config& oricfg, const IndexMode mode) {
CheckIntByRange(knowhere::IndexParams::nbits, MIN_NBITS, MAX_NBITS);
auto rows = oricfg[knowhere::meta::ROWS].get<int64_t>();
auto nbits = oricfg[knowhere::IndexParams::nbits].get<int64_t>();
auto nbits = oricfg.count(IndexParams::nbits) ? oricfg[IndexParams::nbits].get<int64_t>() : DEFAULT_NBITS;
oricfg[knowhere::IndexParams::nbits] = MatchNbits(rows, nbits);
auto m = oricfg[knowhere::IndexParams::m].get<int64_t>();

View File

@ -83,8 +83,6 @@ IndexHNSW::Load(const BinarySet& index_binary) {
}
// LOG_KNOWHERE_DEBUG_ << "IndexHNSW::Load finished, show statistics:";
// LOG_KNOWHERE_DEBUG_ << hnsw_stats->ToString();
normalize = index_->metric_type_ == 1; // 1 == InnerProduct
} catch (std::exception& e) {
KNOWHERE_THROW_MSG(e.what());
}
@ -102,7 +100,6 @@ IndexHNSW::Train(const DatasetPtr& dataset_ptr, const Config& config) {
space = new hnswlib::L2Space(dim);
} else if (metric_type == Metric::IP) {
space = new hnswlib::InnerProductSpace(dim);
normalize = true;
} else {
KNOWHERE_THROW_MSG("Metric type not supported: " + metric_type);
}
@ -142,7 +139,7 @@ IndexHNSW::Query(const DatasetPtr& dataset_ptr, const Config& config, const fais
if (!index_) {
KNOWHERE_THROW_MSG("index not initialize or trained");
}
GET_TENSOR_DATA(dataset_ptr)
GET_TENSOR_DATA_DIM(dataset_ptr)
size_t k = config[meta::TOPK].get<int64_t>();
size_t id_size = sizeof(int64_t) * k;
@ -159,44 +156,39 @@ IndexHNSW::Query(const DatasetPtr& dataset_ptr, const Config& config, const fais
}
index_->setEf(config[IndexParams::ef].get<int64_t>());
using P = std::pair<float, int64_t>;
auto compare = [](const P& v1, const P& v2) { return v1.first < v2.first; };
bool transform = (index_->metric_type_ == 1); // InnerProduct: 1
std::chrono::high_resolution_clock::time_point query_start, query_end;
query_start = std::chrono::high_resolution_clock::now();
#pragma omp parallel for
for (unsigned int i = 0; i < rows; ++i) {
std::vector<P> ret;
const float* single_query = reinterpret_cast<const float*>(p_data) + i * Dim();
auto single_query = (float*)p_data + i * dim;
std::priority_queue<std::pair<float, hnswlib::labeltype>> rst;
if (STATISTICS_LEVEL >= 3) {
ret = index_->searchKnn(single_query, k, compare, bitset, query_stats[i]);
rst = index_->searchKnn(single_query, k, bitset, query_stats[i]);
} else {
auto dummy_stat = hnswlib::StatisticsInfo();
ret = index_->searchKnn(single_query, k, compare, bitset, dummy_stat);
rst = index_->searchKnn(single_query, k, bitset, dummy_stat);
}
size_t rst_size = rst.size();
while (ret.size() < k) {
ret.emplace_back(std::make_pair(-1, -1));
auto p_single_dis = p_dist + i * k;
auto p_single_id = p_id + i * k;
size_t idx = rst_size - 1;
while (!rst.empty()) {
auto& it = rst.top();
p_single_dis[idx] = transform ? (1 - it.first) : it.first;
p_single_id[idx] = it.second;
rst.pop();
idx--;
}
std::vector<float> dist;
std::vector<int64_t> ids;
MapOffsetToUid(p_single_id, rst_size);
if (normalize) {
std::transform(ret.begin(), ret.end(), std::back_inserter(dist),
[](const std::pair<float, int64_t>& e) { return float(1 - e.first); });
} else {
std::transform(ret.begin(), ret.end(), std::back_inserter(dist),
[](const std::pair<float, int64_t>& e) { return e.first; });
for (idx = rst_size; idx < k; idx++) {
p_single_dis[idx] = float(1.0 / 0.0);
p_single_id[idx] = -1;
}
std::transform(ret.begin(), ret.end(), std::back_inserter(ids),
[](const std::pair<float, int64_t>& e) { return e.second; });
MapOffsetToUid(ids.data(), ids.size());
memcpy(p_dist + i * k, dist.data(), dist_size);
memcpy(p_id + i * k, ids.data(), id_size);
}
query_end = std::chrono::high_resolution_clock::now();

View File

@ -56,7 +56,6 @@ class IndexHNSW : public VecIndex {
ClearStatistics() override;
private:
bool normalize = false;
std::shared_ptr<hnswlib::HierarchicalNSW<float>> index_;
};

View File

@ -19,10 +19,10 @@ std::shared_ptr<SPTAG::MetadataSet>
ConvertToMetadataSet(const DatasetPtr& dataset_ptr) {
auto elems = dataset_ptr->Get<int64_t>(meta::ROWS);
auto p_id = (int64_t*)malloc(sizeof(int64_t) * elems);
auto p_id = new int64_t[elems];
for (int64_t i = 0; i < elems; ++i) p_id[i] = i;
auto p_offset = (int64_t*)malloc(sizeof(int64_t) * (elems + 1));
auto p_offset = new int64_t[elems + 1];
for (int64_t i = 0; i <= elems; ++i) p_offset[i] = i * 8;
std::shared_ptr<SPTAG::MetadataSet> metaset(

View File

@ -1098,12 +1098,16 @@ void elkan_L2_sse (
return (i > j) ? data[j + i * (i - 1) / 2] : data[i + j * (j - 1) / 2];
};
#pragma omp parallel for
for (size_t i = j0 + 1; i < j1; i++) {
const float *y_i = y + i * d;
for (size_t j = j0; j < i; j++) {
const float *y_j = y + j * d;
Y(i, j) = sqrt(fvec_L2sqr(y_i, y_j, d));
#pragma omp parallel
{
int nt = omp_get_num_threads();
int rank = omp_get_thread_num();
for (size_t i = j0 + 1 + rank; i < j1; i += nt) {
const float *y_i = y + i * d;
for (size_t j = j0; j < i; j++) {
const float *y_j = y + j * d;
Y(i, j) = fvec_L2sqr(y_i, y_j, d);
}
}
}
@ -1112,18 +1116,22 @@ void elkan_L2_sse (
const float *x_i = x + i * d;
int64_t ids_i = j0;
float val_i = sqrt(fvec_L2sqr(x_i, y + j0 * d, d));
float val_i_2 = val_i * 2;
float val_i = fvec_L2sqr(x_i, y + j0 * d, d);
float val_i_time_4 = val_i * 4;
for (size_t j = j0 + 1; j < j1; j++) {
if (val_i_2 <= Y(ids_i, j)) {
if (val_i_time_4 <= Y(ids_i, j)) {
continue;
}
const float *y_j = y + j * d;
float disij = sqrt(fvec_L2sqr(x_i, y_j, d));
float disij = fvec_L2sqr(x_i, y_j, d / 2);
if (disij >= val_i) {
continue;
}
disij += fvec_L2sqr(x_i + d / 2, y_j + d / 2, d - d / 2);
if (disij < val_i) {
ids_i = j;
val_i = disij;
val_i_2 = val_i * 2;
val_i_time_4 = val_i * 4;
}
}

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -317,50 +317,54 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
return top_candidates;
}
void getNeighborsByHeuristic2(
std::vector<tableint>
getNeighborsByHeuristic2 (
std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> &top_candidates,
const size_t M) {
if (top_candidates.size() < M) {
return;
}
std::priority_queue<std::pair<dist_t, tableint>> queue_closest;
std::vector<std::pair<dist_t, tableint>> return_list;
while (top_candidates.size() > 0) {
queue_closest.emplace(-top_candidates.top().first, top_candidates.top().second);
top_candidates.pop();
}
std::vector<tableint> return_list;
while (queue_closest.size()) {
if (return_list.size() >= M)
break;
std::pair<dist_t, tableint> curent_pair = queue_closest.top();
dist_t dist_to_query = -curent_pair.first;
queue_closest.pop();
bool good = true;
for (std::pair<dist_t, tableint> second_pair : return_list) {
dist_t curdist =
fstdistfunc_(getDataByInternalId(second_pair.second),
getDataByInternalId(curent_pair.second),
dist_func_param_);;
if (curdist < dist_to_query) {
good = false;
break;
if (top_candidates.size() < M) {
return_list.resize(top_candidates.size());
for (int i = static_cast<int>(top_candidates.size() - 1); i >= 0; i--) {
return_list[i] = top_candidates.top().second;
top_candidates.pop();
}
} else if (M > 0) {
return_list.reserve(M);
std::vector<std::pair<dist_t, tableint>> queue_closest;
queue_closest.resize(top_candidates.size());
for (int i = static_cast<int>(top_candidates.size() - 1); i >= 0; i--) {
queue_closest[i] = top_candidates.top();
top_candidates.pop();
}
for (std::pair<dist_t, tableint> &current_pair: queue_closest) {
bool good = true;
for (tableint id : return_list) {
dist_t curdist =
fstdistfunc_(getDataByInternalId(id),
getDataByInternalId(current_pair.second),
dist_func_param_);
if (curdist < current_pair.first) {
good = false;
break;
}
}
if (good) {
return_list.push_back(current_pair.second);
if (return_list.size() >= M) {
break;
}
}
}
if (good) {
return_list.push_back(curent_pair);
}
}
for (std::pair<dist_t, tableint> curent_pair : return_list) {
top_candidates.emplace(-curent_pair.first, curent_pair.second);
}
return return_list;
}
linklistsizeint *get_linklist0(tableint internal_id) const {
return (linklistsizeint *) (data_level0_memory_ + internal_id * size_data_per_element_ + offsetLevel0_);
};
@ -373,21 +377,17 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
return (linklistsizeint *) (linkLists_[internal_id] + (level - 1) * size_links_per_element_);
};
void mutuallyConnectNewElement(const void *data_point, tableint cur_c,
std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> &top_candidates,
int level) {
tableint mutuallyConnectNewElement(const void *data_point, tableint cur_c,
std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> &top_candidates,
int level) {
size_t Mcurmax = level ? maxM_ : maxM0_;
getNeighborsByHeuristic2(top_candidates, M_);
if (top_candidates.size() > M_)
std::vector<tableint> selectedNeighbors(getNeighborsByHeuristic2(top_candidates, M_));
if (selectedNeighbors.size() > M_)
throw std::runtime_error("Should be not be more than M_ candidates returned by the heuristic");
std::vector<tableint> selectedNeighbors;
selectedNeighbors.reserve(M_);
while (top_candidates.size() > 0) {
selectedNeighbors.push_back(top_candidates.top().second);
top_candidates.pop();
}
tableint next_closest_entry_point = selectedNeighbors.front();
{
linklistsizeint *ll_cur;
@ -451,15 +451,11 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
dist_func_param_), data[j]);
}
getNeighborsByHeuristic2(candidates, Mcurmax);
int indx = 0;
while (candidates.size() > 0) {
data[indx] = candidates.top().second;
candidates.pop();
indx++;
std::vector<tableint> selected(getNeighborsByHeuristic2(candidates, Mcurmax));
setListCount(ll_other, static_cast<unsigned short int>(selected.size()));
for (size_t idx = 0; idx < selected.size(); idx++) {
data[idx] = selected[idx];
}
setListCount(ll_other, indx);
// Nearest K:
/*int indx = -1;
for (int j = 0; j < sz_link_list_other; j++) {
@ -475,6 +471,8 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
}
}
return next_closest_entry_point;
}
std::mutex global;
@ -499,17 +497,18 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
std::vector<std::mutex>(new_max_elements).swap(link_list_locks_);
// Reallocate base layer
data_level0_memory_ = (char *) realloc(data_level0_memory_, new_max_elements * size_data_per_element_);
if (data_level0_memory_ == nullptr)
char * data_level0_memory_new = (char *) realloc(data_level0_memory_, new_max_elements * size_data_per_element_);
if (data_level0_memory_new == nullptr)
throw std::runtime_error("Not enough memory: resizeIndex failed to allocate base layer");
data_level0_memory_ = data_level0_memory_new;
// Reallocate all other layers
linkLists_ = (char **) realloc(linkLists_, sizeof(void *) * new_max_elements);
if (linkLists_ == nullptr)
char ** linkLists_new = (char **) realloc(linkLists_, sizeof(void *) * new_max_elements);
if (linkLists_new == nullptr)
throw std::runtime_error("Not enough memory: resizeIndex failed to allocate other layers");
linkLists_ = linkLists_new;
max_elements_=new_max_elements;
max_elements_ = new_max_elements;
}
@ -814,9 +813,7 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
}
std::unique_lock <std::mutex> lock_el(link_list_locks_[cur_c]);
int curlevel = getRandomLevel(mult_);
if (level > 0)
curlevel = level;
int curlevel = (level > 0) ? level : getRandomLevel(mult_);
element_levels_[cur_c] = curlevel;
@ -881,9 +878,7 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> top_candidates = searchBaseLayer(
currObj, data_point, level);
mutuallyConnectNewElement(data_point, cur_c, top_candidates, level);
currObj = top_candidates.top().second;
currObj = mutuallyConnectNewElement(data_point, cur_c, top_candidates, level);
}
} else {
// Do nothing for the first element
@ -956,24 +951,6 @@ class HierarchicalNSW : public AlgorithmInterface<dist_t> {
return result;
};
template <typename Comp>
std::vector<std::pair<dist_t, labeltype>>
searchKnn(const void* query_data, size_t k, Comp comp, const faiss::BitsetView bitset, StatisticsInfo &stats) {
std::vector<std::pair<dist_t, labeltype>> result;
if (cur_element_count == 0) return result;
auto ret = searchKnn(query_data, k, bitset, stats);
while (!ret.empty()) {
result.push_back(ret.top());
ret.pop();
}
std::sort(result.begin(), result.end(), comp);
return result;
}
int64_t cal_size() {
int64_t ret = 0;
ret += sizeof(*this);

File diff suppressed because it is too large Load Diff

View File

@ -92,10 +92,10 @@ namespace hnswlib {
class AlgorithmInterface {
public:
virtual void addPoint(const void *datapoint, labeltype label)=0;
virtual std::priority_queue<std::pair<dist_t, labeltype >> searchKnn(const void *, size_t, const faiss::BitsetView bitset, hnswlib::StatisticsInfo &stats) const = 0;
template <typename Comp>
std::vector<std::pair<dist_t, labeltype>> searchKnn(const void*, size_t, Comp, const faiss::BitsetView bitset, hnswlib::StatisticsInfo &stats) {
}
virtual std::priority_queue<std::pair<dist_t, labeltype >>
searchKnn(const void *, size_t, const faiss::BitsetView bitset, hnswlib::StatisticsInfo &stats) const = 0;
virtual void saveIndex(const std::string &location)=0;
virtual ~AlgorithmInterface(){
}

View File

@ -1,99 +0,0 @@
#pragma once
#ifndef NO_MANUAL_VECTORIZATION
#ifdef __SSE__
#define USE_SSE
#ifdef __AVX__
#define USE_AVX
#endif
#endif
#endif
#if defined(USE_AVX) || defined(USE_SSE)
#ifdef _MSC_VER
#include <intrin.h>
#include <stdexcept>
#else
#include <x86intrin.h>
#endif
#if defined(__GNUC__)
#define PORTABLE_ALIGN32 __attribute__((aligned(32)))
#else
#define PORTABLE_ALIGN32 __declspec(align(32))
#endif
#endif
#include <fstream>
#include <queue>
#include <vector>
#include <string.h>
#include <faiss/utils/ConcurrentBitset.h>
#include <faiss/utils/BitsetView.h>
namespace hnswlib_nm {
typedef int64_t labeltype;
template <typename T>
class pairGreater {
public:
bool operator()(const T& p1, const T& p2) {
return p1.first > p2.first;
}
};
template<typename T>
static void writeBinaryPOD(std::ostream &out, const T &podRef) {
out.write((char *) &podRef, sizeof(T));
}
template<typename T>
static void readBinaryPOD(std::istream &in, T &podRef) {
in.read((char *) &podRef, sizeof(T));
}
template<typename T, typename W>
static void writeBinaryPOD(W &out, const T &podRef) {
out.write((char *) &podRef, sizeof(T));
}
template<typename T, typename R>
static void readBinaryPOD(R &in, T &podRef) {
in.read((char *) &podRef, sizeof(T));
}
template<typename MTYPE>
using DISTFUNC = MTYPE(*)(const void *, const void *, const void *);
template<typename MTYPE>
class SpaceInterface {
public:
//virtual void search(void *);
virtual size_t get_data_size() = 0;
virtual DISTFUNC<MTYPE> get_dist_func() = 0;
virtual void *get_dist_func_param() = 0;
virtual ~SpaceInterface() {}
};
template<typename dist_t>
class AlgorithmInterface {
public:
virtual void addPoint(void *datapoint, labeltype label, size_t base, size_t offset)=0;
virtual std::priority_queue<std::pair<dist_t, labeltype >> searchKnn_NM(const void *, size_t, const faiss::BitsetView bitset, dist_t *pdata) const = 0;
template <typename Comp>
std::vector<std::pair<dist_t, labeltype>> searchKnn_NM(const void*, size_t, Comp, const faiss::BitsetView bitset, dist_t *pdata) {
}
virtual void saveIndex(const std::string &location)=0;
virtual ~AlgorithmInterface(){
}
};
}
#include "space_l2.h"
#include "space_ip.h"
#include "bruteforce.h"
#include "hnswalg_nm.h"

View File

@ -80,6 +80,20 @@ TEST_P(HNSWTest, HNSW_basic) {
auto result = index_->Query(query_dataset, conf, nullptr);
AssertAnns(result, nq, k);
ReleaseQueryResult(result);
// case: k > nb
const int64_t new_rows = 6;
base_dataset->Set(milvus::knowhere::meta::ROWS, new_rows);
index_->Train(base_dataset, conf);
index_->AddWithoutIds(base_dataset, conf);
auto result2 = index_->Query(query_dataset, conf, nullptr);
auto res_ids = result2->Get<int64_t*>(milvus::knowhere::meta::IDS);
for (int64_t i = 0; i < nq; i++) {
for (int64_t j = new_rows; j < k; j++) {
ASSERT_EQ(res_ids[i * k + j], -1);
}
}
ReleaseQueryResult(result2);
}
TEST_P(HNSWTest, HNSW_delete) {