mirror of https://github.com/milvus-io/milvus.git
parent
dbbf91db28
commit
88cf5e2bd8
|
@ -212,13 +212,11 @@ GpuIndexIVFFlat::addImpl_(int n,
|
|||
// Data is already resident on the GPU
|
||||
Tensor<float, 2, true> data(const_cast<float*>(x), {n, (int) this->d});
|
||||
|
||||
auto bitset = toDevice<uint8_t, 1>(resources_, device_, nullptr, stream, {0});
|
||||
|
||||
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
|
||||
Tensor<long, 1, true> labels(const_cast<long*>(xids), {n});
|
||||
|
||||
// Not all vectors may be able to be added (some may contain NaNs etc)
|
||||
index_->classifyAndAddVectors(data, labels, bitset);
|
||||
index_->classifyAndAddVectors(data, labels);
|
||||
|
||||
// but keep the ntotal based on the total number of vectors that we attempted
|
||||
// to add
|
||||
|
|
|
@ -335,13 +335,11 @@ GpuIndexIVFPQ::addImpl_(int n,
|
|||
// Data is already resident on the GPU
|
||||
Tensor<float, 2, true> data(const_cast<float*>(x), {n, (int) this->d});
|
||||
|
||||
auto bitset = toDevice<uint8_t, 1>(resources_, device_, nullptr, stream, {0});
|
||||
|
||||
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
|
||||
Tensor<long, 1, true> labels(const_cast<long*>(xids), {n});
|
||||
|
||||
// Not all vectors may be able to be added (some may contain NaNs etc)
|
||||
index_->classifyAndAddVectors(data, labels, bitset);
|
||||
index_->classifyAndAddVectors(data, labels);
|
||||
|
||||
// but keep the ntotal based on the total number of vectors that we attempted
|
||||
// to add
|
||||
|
|
|
@ -309,13 +309,11 @@ GpuIndexIVFSQHybrid::addImpl_(int n,
|
|||
// Data is already resident on the GPU
|
||||
Tensor<float, 2, true> data(const_cast<float*>(x), {n, (int) this->d});
|
||||
|
||||
auto bitset = toDevice<uint8_t, 1>(resources_, device_, nullptr, stream, {0});
|
||||
|
||||
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
|
||||
Tensor<long, 1, true> labels(const_cast<long*>(xids), {n});
|
||||
|
||||
// Not all vectors may be able to be added (some may contain NaNs etc)
|
||||
index_->classifyAndAddVectors(data, labels, bitset);
|
||||
index_->classifyAndAddVectors(data, labels);
|
||||
|
||||
// but keep the ntotal based on the total number of vectors that we attempted
|
||||
// to add
|
||||
|
|
|
@ -244,13 +244,11 @@ GpuIndexIVFScalarQuantizer::addImpl_(int n,
|
|||
// Data is already resident on the GPU
|
||||
Tensor<float, 2, true> data(const_cast<float*>(x), {n, (int) this->d});
|
||||
|
||||
auto bitset = toDevice<uint8_t, 1>(resources_, device_, nullptr, stream, {0});
|
||||
|
||||
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
|
||||
Tensor<long, 1, true> labels(const_cast<long*>(xids), {n});
|
||||
|
||||
// Not all vectors may be able to be added (some may contain NaNs etc)
|
||||
index_->classifyAndAddVectors(data, labels, bitset);
|
||||
index_->classifyAndAddVectors(data, labels);
|
||||
|
||||
// but keep the ntotal based on the total number of vectors that we attempted
|
||||
// to add
|
||||
|
|
|
@ -157,14 +157,15 @@ IVFFlat::addCodeVectorsFromCpu(int listId,
|
|||
|
||||
int
|
||||
IVFFlat::classifyAndAddVectors(Tensor<float, 2, true>& vecs,
|
||||
Tensor<long, 1, true>& indices,
|
||||
Tensor<uint8_t, 1, true>& bitset) {
|
||||
Tensor<long, 1, true>& indices) {
|
||||
FAISS_ASSERT(vecs.getSize(0) == indices.getSize(0));
|
||||
FAISS_ASSERT(vecs.getSize(1) == dim_);
|
||||
|
||||
auto& mem = resources_->getMemoryManagerCurrentDevice();
|
||||
auto stream = resources_->getDefaultStreamCurrentDevice();
|
||||
|
||||
DeviceTensor<uint8_t, 1, true> bitset(mem, {0}, stream);
|
||||
|
||||
// Number of valid vectors that we actually add; we return this
|
||||
int numAdded = 0;
|
||||
|
||||
|
|
|
@ -44,8 +44,7 @@ class IVFFlat : public IVFBase {
|
|||
/// Returns the number of vectors successfully added. Vectors may
|
||||
/// not be able to be added because they contain NaNs.
|
||||
int classifyAndAddVectors(Tensor<float, 2, true>& vecs,
|
||||
Tensor<long, 1, true>& indices,
|
||||
Tensor<uint8_t, 1, true>& bitset);
|
||||
Tensor<long, 1, true>& indices);
|
||||
|
||||
|
||||
/// Find the approximate k nearest neigbors for `queries` against
|
||||
|
|
|
@ -110,8 +110,7 @@ IVFPQ::setPrecomputedCodes(bool enable) {
|
|||
|
||||
int
|
||||
IVFPQ::classifyAndAddVectors(Tensor<float, 2, true>& vecs,
|
||||
Tensor<long, 1, true>& indices,
|
||||
Tensor<uint8_t, 1, true>& bitset) {
|
||||
Tensor<long, 1, true>& indices) {
|
||||
FAISS_ASSERT(vecs.getSize(0) == indices.getSize(0));
|
||||
FAISS_ASSERT(vecs.getSize(1) == dim_);
|
||||
|
||||
|
@ -119,6 +118,8 @@ IVFPQ::classifyAndAddVectors(Tensor<float, 2, true>& vecs,
|
|||
auto& coarseCentroids = quantizer_->getVectorsFloat32Ref();
|
||||
auto& mem = resources_->getMemoryManagerCurrentDevice();
|
||||
auto stream = resources_->getDefaultStreamCurrentDevice();
|
||||
|
||||
DeviceTensor<uint8_t, 1, true> bitset(mem, {0}, stream);
|
||||
|
||||
// Number of valid vectors that we actually add; we return this
|
||||
int numAdded = 0;
|
||||
|
|
|
@ -52,8 +52,7 @@ class IVFPQ : public IVFBase {
|
|||
/// Returns the number of vectors successfully added. Vectors may
|
||||
/// not be able to be added because they contain NaNs.
|
||||
int classifyAndAddVectors(Tensor<float, 2, true>& vecs,
|
||||
Tensor<long, 1, true>& indices,
|
||||
Tensor<uint8_t, 1, true>& bitset);
|
||||
Tensor<long, 1, true>& indices);
|
||||
|
||||
/// Find the approximate k nearest neigbors for `queries` against
|
||||
/// our database
|
||||
|
|
Loading…
Reference in New Issue