Enable structured index

Signed-off-by: FluorineDog <guilin.gou@zilliz.com>
pull/4973/head^2
FluorineDog 2020-11-24 19:09:57 +08:00 committed by yefu.chen
parent d1f31c7b4e
commit 83379977b2
22 changed files with 1040 additions and 87 deletions

View File

@ -20,6 +20,9 @@ class DataObj {
public:
virtual int64_t
Size() = 0;
public:
virtual ~DataObj() = default;
};
using DataObjPtr = std::shared_ptr<DataObj>;

View File

@ -20,7 +20,7 @@
namespace milvus {
namespace knowhere {
enum OperatorType { LT = 0, LE = 1, GT = 3, GE = 4 };
enum class OperatorType { LT = 0, LE = 1, GT = 3, GE = 4 };
static std::map<std::string, OperatorType> s_map_operator_type = {
{"LT", OperatorType::LT},

View File

@ -0,0 +1,89 @@
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#pragma once
#include <map>
#include <memory>
#include <string>
#include "faiss/utils/ConcurrentBitset.h"
#include "knowhere/index/Index.h"
#include <boost/dynamic_bitset.hpp>
namespace milvus {
namespace knowhere::scalar {
enum class OperatorType { LT = 0, LE = 1, GT = 3, GE = 4 };
static std::map<std::string, OperatorType> s_map_operator_type = {
{"LT", OperatorType::LT},
{"LE", OperatorType::LE},
{"GT", OperatorType::GT},
{"GE", OperatorType::GE},
};
template <typename T>
struct IndexStructure {
IndexStructure() : a_(0), idx_(0) {
}
explicit IndexStructure(const T a) : a_(a), idx_(0) {
}
IndexStructure(const T a, const size_t idx) : a_(a), idx_(idx) {
}
bool
operator<(const IndexStructure& b) const {
return a_ < b.a_;
}
bool
operator<=(const IndexStructure& b) const {
return a_ <= b.a_;
}
bool
operator>(const IndexStructure& b) const {
return a_ > b.a_;
}
bool
operator>=(const IndexStructure& b) const {
return a_ >= b.a_;
}
bool
operator==(const IndexStructure& b) const {
return a_ == b.a_;
}
T a_;
size_t idx_;
};
using TargetBitmap = boost::dynamic_bitset<>;
using TargetBitmapPtr = std::unique_ptr<TargetBitmap>;
template <typename T>
class StructuredIndex : public Index {
public:
virtual void
Build(const size_t n, const T* values) = 0;
virtual const TargetBitmapPtr
In(const size_t n, const T* values) = 0;
virtual const TargetBitmapPtr
NotIn(const size_t n, const T* values) = 0;
virtual const TargetBitmapPtr
Range(const T value, const OperatorType op) = 0;
virtual const TargetBitmapPtr
Range(const T lower_bound_value, bool lb_inclusive, const T upper_bound_value, bool ub_inclusive) = 0;
};
template <typename T>
using StructuredIndexPtr = std::shared_ptr<StructuredIndex<T>>;
} // namespace knowhere::scalar
} // namespace milvus

View File

@ -0,0 +1,153 @@
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <algorithm>
#include <memory>
#include <utility>
#include "knowhere/common/Log.h"
#include "knowhere/index/structured_index_simple/StructuredIndexFlat.h"
namespace milvus {
namespace knowhere::scalar {
template <typename T>
StructuredIndexFlat<T>::StructuredIndexFlat() : is_built_(false), data_() {
}
template <typename T>
StructuredIndexFlat<T>::StructuredIndexFlat(const size_t n, const T* values) : is_built_(false) {
Build(n, values);
}
template <typename T>
StructuredIndexFlat<T>::~StructuredIndexFlat() {
}
template <typename T>
void
StructuredIndexFlat<T>::Build(const size_t n, const T* values) {
data_.reserve(n);
T* p = const_cast<T*>(values);
for (size_t i = 0; i < n; ++i) {
data_.emplace_back(IndexStructure(*p++, i));
}
is_built_ = true;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexFlat<T>::In(const size_t n, const T* values) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size());
for (size_t i = 0; i < n; ++i) {
for (const auto& index : data_) {
if (index->a_ == *(values + i)) {
bitset->set(index->idx_);
}
}
}
return bitset;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexFlat<T>::NotIn(const size_t n, const T* values) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size(), true);
for (size_t i = 0; i < n; ++i) {
for (const auto& index : data_) {
if (index->a_ == *(values + i)) {
bitset->reset(index->idx_);
}
}
}
return bitset;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexFlat<T>::Range(const T value, const OperatorType op) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size());
auto lb = data_.begin();
auto ub = data_.end();
for (; lb <= ub; lb++) {
switch (op) {
case OperatorType::LT:
if (lb < IndexStructure<T>(value)) {
bitset->set(lb->idx_);
}
break;
case OperatorType::LE:
if (lb <= IndexStructure<T>(value)) {
bitset->set(lb->idx_);
}
break;
case OperatorType::GT:
if (lb > IndexStructure<T>(value)) {
bitset->set(lb->idx_);
}
break;
case OperatorType::GE:
if (lb >= IndexStructure<T>(value)) {
bitset->set(lb->idx_);
}
break;
default:
KNOWHERE_THROW_MSG("Invalid OperatorType:" + std::to_string((int)op) + "!");
}
}
return bitset;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexFlat<T>::Range(T lower_bound_value, bool lb_inclusive, T upper_bound_value, bool ub_inclusive) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size());
if (lower_bound_value > upper_bound_value) {
std::swap(lower_bound_value, upper_bound_value);
std::swap(lb_inclusive, ub_inclusive);
}
auto lb = data_.begin();
auto ub = data_.end();
for (; lb <= ub; ++lb) {
if (lb_inclusive && ub_inclusive) {
if (lb >= IndexStructure<T>(lower_bound_value) && lb <= IndexStructure<T>(upper_bound_value)) {
bitset->set(lb->idx_);
}
} else if (lb_inclusive && !ub_inclusive) {
if (lb >= IndexStructure<T>(lower_bound_value) && lb < IndexStructure<T>(upper_bound_value)) {
bitset->set(lb->idx_);
}
} else if (!lb_inclusive && ub_inclusive) {
if (lb > IndexStructure<T>(lower_bound_value) && lb <= IndexStructure<T>(upper_bound_value)) {
bitset->set(lb->idx_);
}
} else {
if (lb > IndexStructure<T>(lower_bound_value) && lb < IndexStructure<T>(upper_bound_value)) {
bitset->set(lb->idx_);
}
}
}
return bitset;
}
} // namespace knowhere::scalar
} // namespace milvus

View File

@ -0,0 +1,80 @@
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#pragma once
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "knowhere/common/Exception.h"
#include "knowhere/index/structured_index_simple/StructuredIndex.h"
namespace milvus {
namespace knowhere::scalar {
template <typename T>
class StructuredIndexFlat : public StructuredIndex<T> {
public:
StructuredIndexFlat();
StructuredIndexFlat(const size_t n, const T* values);
~StructuredIndexFlat();
BinarySet
Serialize(const Config& config = Config()) override;
void
Load(const BinarySet& index_binary) override;
void
Build(const size_t n, const T* values) override;
void
build();
const TargetBitmapPtr
In(const size_t n, const T* values) override;
const TargetBitmapPtr
NotIn(const size_t n, const T* values) override;
const TargetBitmapPtr
Range(const T value, const OperatorType op) override;
const TargetBitmapPtr
Range(T lower_bound_value, bool lb_inclusive, T upper_bound_value, bool ub_inclusive) override;
const std::vector<IndexStructure<T>>&
GetData() {
return data_;
}
int64_t
Size() override {
return (int64_t)data_.size();
}
bool
IsBuilt() const {
return is_built_;
}
private:
bool is_built_;
std::vector<IndexStructure<T>> data_;
};
template <typename T>
using StructuredIndexFlatPtr = std::shared_ptr<StructuredIndexFlat<T>>;
} // namespace knowhere::scalar
} // namespace milvus
#include "knowhere/index/structured_index_simple/StructuredIndexFlat-inl.h"

View File

@ -0,0 +1,199 @@
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <algorithm>
#include <memory>
#include <utility>
#include "knowhere/common/Log.h"
#include "knowhere/index/structured_index_simple/StructuredIndexSort.h"
namespace milvus {
namespace knowhere::scalar {
template <typename T>
StructuredIndexSort<T>::StructuredIndexSort() : is_built_(false), data_() {
}
template <typename T>
StructuredIndexSort<T>::StructuredIndexSort(const size_t n, const T* values) : is_built_(false) {
StructuredIndexSort<T>::Build(n, values);
}
template <typename T>
StructuredIndexSort<T>::~StructuredIndexSort() {
}
template <typename T>
void
StructuredIndexSort<T>::Build(const size_t n, const T* values) {
data_.reserve(n);
T* p = const_cast<T*>(values);
for (size_t i = 0; i < n; ++i) {
data_.emplace_back(IndexStructure(*p++, i));
}
build();
}
template <typename T>
void
StructuredIndexSort<T>::build() {
if (is_built_)
return;
if (data_.size() == 0) {
// todo: throw an exception
KNOWHERE_THROW_MSG("StructuredIndexSort cannot build null values!");
}
std::sort(data_.begin(), data_.end());
is_built_ = true;
}
template <typename T>
BinarySet
StructuredIndexSort<T>::Serialize(const milvus::knowhere::Config& config) {
if (!is_built_) {
build();
}
auto index_data_size = data_.size() * sizeof(IndexStructure<T>);
std::shared_ptr<uint8_t[]> index_data(new uint8_t[index_data_size]);
memcpy(index_data.get(), data_.data(), index_data_size);
std::shared_ptr<uint8_t[]> index_length(new uint8_t[sizeof(size_t)]);
auto index_size = data_.size();
memcpy(index_length.get(), &index_size, sizeof(size_t));
BinarySet res_set;
res_set.Append("index_data", index_data, index_data_size);
res_set.Append("index_length", index_length, sizeof(size_t));
return res_set;
}
template <typename T>
void
StructuredIndexSort<T>::Load(const milvus::knowhere::BinarySet& index_binary) {
try {
size_t index_size;
auto index_length = index_binary.GetByName("index_length");
memcpy(&index_size, index_length->data.get(), (size_t)index_length->size);
auto index_data = index_binary.GetByName("index_data");
data_.resize(index_size);
memcpy(data_.data(), index_data->data.get(), (size_t)index_data->size);
is_built_ = true;
} catch (...) {
KNOHWERE_ERROR_MSG("StructuredIndexSort Load failed!");
}
}
template <typename T>
const TargetBitmapPtr
StructuredIndexSort<T>::In(const size_t n, const T* values) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size());
for (size_t i = 0; i < n; ++i) {
auto lb = std::lower_bound(data_.begin(), data_.end(), IndexStructure<T>(*(values + i)));
auto ub = std::upper_bound(data_.begin(), data_.end(), IndexStructure<T>(*(values + i)));
for (; lb < ub; ++lb) {
if (lb->a_ != *(values + i)) {
LOG_KNOWHERE_ERROR_ << "error happens in StructuredIndexSort<T>::In, experted value is: "
<< *(values + i) << ", but real value is: " << lb->a_;
}
bitset->set(lb->idx_);
}
}
return bitset;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexSort<T>::NotIn(const size_t n, const T* values) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size(), true);
for (size_t i = 0; i < n; ++i) {
auto lb = std::lower_bound(data_.begin(), data_.end(), IndexStructure<T>(*(values + i)));
auto ub = std::upper_bound(data_.begin(), data_.end(), IndexStructure<T>(*(values + i)));
for (; lb < ub; ++lb) {
if (lb->a_ != *(values + i)) {
LOG_KNOWHERE_ERROR_ << "error happens in StructuredIndexSort<T>::NotIn, experted value is: "
<< *(values + i) << ", but real value is: " << lb->a_;
}
bitset->reset(lb->idx_);
}
}
return bitset;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexSort<T>::Range(const T value, const OperatorType op) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size());
auto lb = data_.begin();
auto ub = data_.end();
switch (op) {
case OperatorType::LT:
ub = std::lower_bound(data_.begin(), data_.end(), IndexStructure<T>(value));
break;
case OperatorType::LE:
ub = std::upper_bound(data_.begin(), data_.end(), IndexStructure<T>(value));
break;
case OperatorType::GT:
lb = std::upper_bound(data_.begin(), data_.end(), IndexStructure<T>(value));
break;
case OperatorType::GE:
lb = std::lower_bound(data_.begin(), data_.end(), IndexStructure<T>(value));
break;
default:
KNOWHERE_THROW_MSG("Invalid OperatorType:" + std::to_string((int)op) + "!");
}
for (; lb < ub; ++lb) {
bitset->set(lb->idx_);
}
return bitset;
}
template <typename T>
const TargetBitmapPtr
StructuredIndexSort<T>::Range(T lower_bound_value, bool lb_inclusive, T upper_bound_value, bool ub_inclusive) {
if (!is_built_) {
build();
}
TargetBitmapPtr bitset = std::make_unique<TargetBitmap>(data_.size());
if (lower_bound_value > upper_bound_value) {
std::swap(lower_bound_value, upper_bound_value);
std::swap(lb_inclusive, ub_inclusive);
}
auto lb = data_.begin();
auto ub = data_.end();
if (lb_inclusive) {
lb = std::lower_bound(data_.begin(), data_.end(), IndexStructure<T>(lower_bound_value));
} else {
lb = std::upper_bound(data_.begin(), data_.end(), IndexStructure<T>(lower_bound_value));
}
if (ub_inclusive) {
ub = std::upper_bound(data_.begin(), data_.end(), IndexStructure<T>(upper_bound_value));
} else {
ub = std::lower_bound(data_.begin(), data_.end(), IndexStructure<T>(upper_bound_value));
}
for (; lb < ub; ++lb) {
bitset->set(lb->idx_);
}
return bitset;
}
} // namespace knowhere::scalar
} // namespace milvus

View File

@ -0,0 +1,80 @@
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#pragma once
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "knowhere/common/Exception.h"
#include "knowhere/index/structured_index_simple/StructuredIndex.h"
namespace milvus {
namespace knowhere::scalar {
template <typename T>
class StructuredIndexSort : public StructuredIndex<T> {
public:
StructuredIndexSort();
StructuredIndexSort(const size_t n, const T* values);
~StructuredIndexSort();
BinarySet
Serialize(const Config& config = Config()) override;
void
Load(const BinarySet& index_binary) override;
void
Build(const size_t n, const T* values) override;
void
build();
const TargetBitmapPtr
In(size_t n, const T* values) override;
const TargetBitmapPtr
NotIn(size_t n, const T* values) override;
const TargetBitmapPtr
Range(T value, OperatorType op) override;
const TargetBitmapPtr
Range(T lower_bound_value, bool lb_inclusive, T upper_bound_value, bool ub_inclusive) override;
const std::vector<IndexStructure<T>>&
GetData() {
return data_;
}
int64_t
Size() override {
return (int64_t)data_.size();
}
bool
IsBuilt() const {
return is_built_;
}
private:
bool is_built_;
std::vector<IndexStructure<T>> data_;
};
template <typename T>
using StructuredIndexSortPtr = std::shared_ptr<StructuredIndexSort<T>>;
} // namespace knowhere::scalar
} // namespace milvus
#include "knowhere/index/structured_index_simple/StructuredIndexSort-inl.h"

View File

@ -15,7 +15,9 @@ create_bitmap_view(std::optional<const BitmapSimple*> bitmaps_opt, int64_t chunk
auto& bitmaps = *bitmaps_opt.value();
auto& src_vec = bitmaps.at(chunk_id);
auto dst = std::make_shared<faiss::ConcurrentBitset>(src_vec.size());
boost::to_block_range(src_vec, dst->mutable_data());
auto iter = reinterpret_cast<BitmapChunk::block_type*>(dst->mutable_data());
boost::to_block_range(src_vec, iter);
return dst;
}
@ -28,9 +30,9 @@ QueryBruteForceImpl(const SegmentSmallIndex& segment,
Timestamp timestamp,
std::optional<const BitmapSimple*> bitmaps_opt,
QueryResult& results) {
auto& record = segment.get_insert_record();
auto& schema = segment.get_schema();
auto& indexing_record = segment.get_indexing_record();
auto& record = segment.get_insert_record();
// step 1: binary search to find the barrier of the snapshot
auto ins_barrier = get_barrier(record, timestamp);
auto max_chunk = upper_div(ins_barrier, DefaultElementPerChunk);
@ -48,7 +50,6 @@ QueryBruteForceImpl(const SegmentSmallIndex& segment,
Assert(vecfield_offset_opt.has_value());
auto vecfield_offset = vecfield_offset_opt.value();
auto& field = schema[vecfield_offset];
auto vec_ptr = record.get_vec_entity<float>(vecfield_offset);
Assert(field.get_data_type() == DataType::VECTOR_FLOAT);
auto dim = field.get_dim();
@ -61,31 +62,45 @@ QueryBruteForceImpl(const SegmentSmallIndex& segment,
std::vector<float> final_dis(total_count, std::numeric_limits<float>::max());
auto max_indexed_id = indexing_record.get_finished_ack();
const auto& indexing_entry = indexing_record.get_indexing(vecfield_offset);
const auto& indexing_entry = indexing_record.get_vec_entry(vecfield_offset);
auto search_conf = indexing_entry.get_search_conf(topK);
for (int chunk_id = 0; chunk_id < max_indexed_id; ++chunk_id) {
auto indexing = indexing_entry.get_indexing(chunk_id);
auto src_data = vec_ptr->get_chunk(chunk_id).data();
auto dataset = knowhere::GenDataset(num_queries, dim, src_data);
auto indexing = indexing_entry.get_vec_indexing(chunk_id);
auto dataset = knowhere::GenDataset(num_queries, dim, query_data);
auto bitmap_view = create_bitmap_view(bitmaps_opt, chunk_id);
auto ans = indexing->Query(dataset, search_conf, bitmap_view);
auto dis = ans->Get<float*>(milvus::knowhere::meta::DISTANCE);
auto uids = ans->Get<int64_t*>(milvus::knowhere::meta::IDS);
// convert chunk uid to segment uid
for (int64_t i = 0; i < total_count; ++i) {
auto& x = uids[i];
if (x != -1) {
x += chunk_id * DefaultElementPerChunk;
}
}
merge_into(num_queries, topK, final_dis.data(), final_uids.data(), dis, uids);
}
auto vec_ptr = record.get_vec_entity<float>(vecfield_offset);
// step 4: brute force search where small indexing is unavailable
for (int chunk_id = max_indexed_id; chunk_id < max_chunk; ++chunk_id) {
std::vector<int64_t> buf_uids(total_count, -1);
std::vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
faiss::float_maxheap_array_t buf = {(size_t)num_queries, (size_t)topK, buf_uids.data(), buf_dis.data()};
auto src_data = vec_ptr->get_chunk(chunk_id).data();
auto& chunk = vec_ptr->get_chunk(chunk_id);
auto nsize =
chunk_id != max_chunk - 1 ? DefaultElementPerChunk : ins_barrier - chunk_id * DefaultElementPerChunk;
auto bitmap_view = create_bitmap_view(bitmaps_opt, chunk_id);
faiss::knn_L2sqr(query_data, src_data, dim, num_queries, nsize, &buf, bitmap_view);
faiss::knn_L2sqr(query_data, chunk.data(), dim, num_queries, nsize, &buf, bitmap_view);
Assert(buf_uids.size() == total_count);
// convert chunk uid to segment uid
for (auto& x : buf_uids) {
if (x != -1) {
x += chunk_id * DefaultElementPerChunk;
}
}
merge_into(num_queries, topK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
}

View File

@ -37,9 +37,9 @@ class ExecExprVisitor : ExprVisitor {
}
public:
template <typename Tp, typename Func>
template <typename T, typename IndexFunc, typename ElementFunc>
auto
ExecRangeVisitorImpl(RangeExprImpl<Tp>& expr_scp, Func func) -> RetType;
ExecRangeVisitorImpl(RangeExprImpl<T>& expr, IndexFunc func, ElementFunc element_func) -> RetType;
template <typename T>
auto

View File

@ -55,9 +55,10 @@ ExecExprVisitor::visit(TermExpr& expr) {
PanicInfo("unimplemented");
}
template <typename T, typename Func>
template <typename T, typename IndexFunc, typename ElementFunc>
auto
ExecExprVisitor::ExecRangeVisitorImpl(RangeExprImpl<T>& expr, Func func) -> RetType {
ExecExprVisitor::ExecRangeVisitorImpl(RangeExprImpl<T>& expr, IndexFunc index_func, ElementFunc element_func)
-> RetType {
auto& records = segment_.get_insert_record();
auto data_type = expr.data_type_;
auto& schema = segment_.get_schema();
@ -67,15 +68,28 @@ ExecExprVisitor::ExecRangeVisitorImpl(RangeExprImpl<T>& expr, Func func) -> RetT
auto& field_meta = schema[field_offset];
auto vec_ptr = records.get_scalar_entity<T>(field_offset);
auto& vec = *vec_ptr;
auto& indexing_record = segment_.get_indexing_record();
const segcore::ScalarIndexingEntry<T>& entry = indexing_record.get_scalar_entry<T>(field_offset);
RetType results(vec.chunk_size());
for (auto chunk_id = 0; chunk_id < vec.chunk_size(); ++chunk_id) {
auto indexing_barrier = indexing_record.get_finished_ack();
for (auto chunk_id = 0; chunk_id < indexing_barrier; ++chunk_id) {
auto& result = results[chunk_id];
auto indexing = entry.get_indexing(chunk_id);
auto data = index_func(indexing);
result = ~std::move(*data);
Assert(result.size() == segcore::DefaultElementPerChunk);
}
for (auto chunk_id = indexing_barrier; chunk_id < vec.chunk_size(); ++chunk_id) {
auto& result = results[chunk_id];
result.resize(segcore::DefaultElementPerChunk);
auto chunk = vec.get_chunk(chunk_id);
const T* data = chunk.data();
for (int index = 0; index < segcore::DefaultElementPerChunk; ++index) {
result[index] = func(data[index]);
result[index] = element_func(data[index]);
}
Assert(result.size() == segcore::DefaultElementPerChunk);
}
return results;
}
@ -89,6 +103,8 @@ ExecExprVisitor::ExecRangeVisitorDispatcher(RangeExpr& expr_raw) -> RetType {
auto conditions = expr.conditions_;
std::sort(conditions.begin(), conditions.end());
using OpType = RangeExpr::OpType;
using Index = knowhere::scalar::StructuredIndex<T>;
using Operator = knowhere::scalar::OperatorType;
if (conditions.size() == 1) {
auto cond = conditions[0];
// auto [op, val] = cond; // strange bug on capture
@ -96,27 +112,39 @@ ExecExprVisitor::ExecRangeVisitorDispatcher(RangeExpr& expr_raw) -> RetType {
auto val = std::get<1>(cond);
switch (op) {
case OpType::Equal: {
return ExecRangeVisitorImpl(expr, [val](T x) { return !(x == val); });
auto index_func = [val](Index* index) { return index->In(1, &val); };
return ExecRangeVisitorImpl(expr, index_func, [val](T x) { return !(x == val); });
}
case OpType::NotEqual: {
return ExecRangeVisitorImpl(expr, [val](T x) { return !(x != val); });
auto index_func = [val](Index* index) {
// Note: index->NotIn() is buggy, investigating
// this is a workaround
auto res = index->In(1, &val);
*res = ~std::move(*res);
return res;
};
return ExecRangeVisitorImpl(expr, index_func, [val](T x) { return !(x != val); });
}
case OpType::GreaterEqual: {
return ExecRangeVisitorImpl(expr, [val](T x) { return !(x >= val); });
auto index_func = [val](Index* index) { return index->Range(val, Operator::GE); };
return ExecRangeVisitorImpl(expr, index_func, [val](T x) { return !(x >= val); });
}
case OpType::GreaterThan: {
return ExecRangeVisitorImpl(expr, [val](T x) { return !(x > val); });
auto index_func = [val](Index* index) { return index->Range(val, Operator::GT); };
return ExecRangeVisitorImpl(expr, index_func, [val](T x) { return !(x > val); });
}
case OpType::LessEqual: {
return ExecRangeVisitorImpl(expr, [val](T x) { return !(x <= val); });
auto index_func = [val](Index* index) { return index->Range(val, Operator::LE); };
return ExecRangeVisitorImpl(expr, index_func, [val](T x) { return !(x <= val); });
}
case OpType::LessThan: {
return ExecRangeVisitorImpl(expr, [val](T x) { return !(x < val); });
auto index_func = [val](Index* index) { return index->Range(val, Operator::LT); };
return ExecRangeVisitorImpl(expr, index_func, [val](T x) { return !(x < val); });
}
default: {
PanicInfo("unsupported range node");
@ -131,13 +159,17 @@ ExecExprVisitor::ExecRangeVisitorDispatcher(RangeExpr& expr_raw) -> RetType {
auto ops = std::make_tuple(op1, op2);
if (false) {
} else if (ops == std::make_tuple(OpType::GreaterThan, OpType::LessThan)) {
return ExecRangeVisitorImpl(expr, [val1, val2](T x) { return !(val1 < x && x < val2); });
auto index_func = [val1, val2](Index* index) { return index->Range(val1, false, val2, false); };
return ExecRangeVisitorImpl(expr, index_func, [val1, val2](T x) { return !(val1 < x && x < val2); });
} else if (ops == std::make_tuple(OpType::GreaterThan, OpType::LessEqual)) {
return ExecRangeVisitorImpl(expr, [val1, val2](T x) { return !(val1 < x && x <= val2); });
auto index_func = [val1, val2](Index* index) { return index->Range(val1, false, val2, true); };
return ExecRangeVisitorImpl(expr, index_func, [val1, val2](T x) { return !(val1 < x && x <= val2); });
} else if (ops == std::make_tuple(OpType::GreaterEqual, OpType::LessThan)) {
return ExecRangeVisitorImpl(expr, [val1, val2](T x) { return !(val1 <= x && x < val2); });
auto index_func = [val1, val2](Index* index) { return index->Range(val1, true, val2, false); };
return ExecRangeVisitorImpl(expr, index_func, [val1, val2](T x) { return !(val1 <= x && x < val2); });
} else if (ops == std::make_tuple(OpType::GreaterEqual, OpType::LessEqual)) {
return ExecRangeVisitorImpl(expr, [val1, val2](T x) { return !(val1 <= x && x <= val2); });
auto index_func = [val1, val2](Index* index) { return index->Range(val1, true, val2, true); };
return ExecRangeVisitorImpl(expr, index_func, [val1, val2](T x) { return !(val1 <= x && x <= val2); });
} else {
PanicInfo("unsupported range node");
}
@ -157,7 +189,7 @@ ExecExprVisitor::visit(RangeExpr& expr) {
// ret = ExecRangeVisitorDispatcher<bool>(expr);
// break;
//}
case DataType::BOOL:
// case DataType::BOOL:
case DataType::INT8: {
ret = ExecRangeVisitorDispatcher<int8_t>(expr);
break;

View File

@ -55,8 +55,9 @@ ExecPlanNodeVisitor::visit(FloatVectorANNS& node) {
auto bitmap = ExecExprVisitor(*segment).call_child(*node.predicate_.value());
auto ptr = &bitmap;
QueryBruteForceImpl(*segment, node.query_info_, src_data, num_queries, timestamp_, ptr, ret);
} else {
QueryBruteForceImpl(*segment, node.query_info_, src_data, num_queries, timestamp_, std::nullopt, ret);
}
QueryBruteForceImpl(*segment, node.query_info_, src_data, num_queries, timestamp_, std::nullopt, ret);
ret_ = ret;
}

View File

@ -115,8 +115,8 @@ ShowExprVisitor::visit(TermExpr& expr) {
return TermExtract<double>(expr);
case DataType::FLOAT:
return TermExtract<float>(expr);
case DataType::BOOL:
return TermExtract<bool>(expr);
// case DataType::BOOL:
// return TermExtract<bool>(expr);
default:
PanicInfo("unsupported type");
}

View File

@ -5,7 +5,7 @@
namespace milvus::segcore {
void
IndexingEntry::BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base) {
VecIndexingEntry::BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base) {
// TODO
assert(field_meta_.get_data_type() == DataType::VECTOR_FLOAT);
@ -30,7 +30,7 @@ IndexingEntry::BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBas
}
knowhere::Config
IndexingEntry::get_build_conf() const {
VecIndexingEntry::get_build_conf() const {
return knowhere::Config{{knowhere::meta::DIM, field_meta_.get_dim()},
{knowhere::IndexParams::nlist, 100},
{knowhere::IndexParams::nprobe, 4},
@ -39,7 +39,7 @@ IndexingEntry::get_build_conf() const {
}
knowhere::Config
IndexingEntry::get_search_conf(int top_K) const {
VecIndexingEntry::get_search_conf(int top_K) const {
return knowhere::Config{{knowhere::meta::DIM, field_meta_.get_dim()},
{knowhere::meta::TOPK, top_K},
{knowhere::IndexParams::nlist, 100},
@ -65,10 +65,54 @@ IndexingRecord::UpdateResourceAck(int64_t chunk_ack, const InsertRecord& record)
// std::thread([this, old_ack, chunk_ack, &record] {
for (auto& [field_offset, entry] : entries_) {
auto vec_base = record.entity_vec_[field_offset].get();
entry.BuildIndexRange(old_ack, chunk_ack, vec_base);
entry->BuildIndexRange(old_ack, chunk_ack, vec_base);
}
finished_ack_.AddSegment(old_ack, chunk_ack);
// }).detach();
}
template <typename T>
void
ScalarIndexingEntry<T>::BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base) {
auto dim = field_meta_.get_dim();
auto source = dynamic_cast<const ConcurrentVector<T, true>*>(vec_base);
Assert(source);
auto chunk_size = source->chunk_size();
assert(ack_end <= chunk_size);
data_.grow_to_at_least(ack_end);
for (int chunk_id = ack_beg; chunk_id < ack_end; chunk_id++) {
const auto& chunk = source->get_chunk(chunk_id);
// build index for chunk
// TODO
Assert(chunk.size() == DefaultElementPerChunk);
auto indexing = std::make_unique<knowhere::scalar::StructuredIndexSort<T>>();
indexing->Build(DefaultElementPerChunk, chunk.data());
data_[chunk_id] = std::move(indexing);
}
}
std::unique_ptr<IndexingEntry>
CreateIndex(const FieldMeta& field_meta) {
if (field_meta.is_vector()) {
return std::make_unique<VecIndexingEntry>(field_meta);
}
switch (field_meta.get_data_type()) {
case DataType::INT8:
return std::make_unique<ScalarIndexingEntry<int8_t>>(field_meta);
case DataType::INT16:
return std::make_unique<ScalarIndexingEntry<int16_t>>(field_meta);
case DataType::INT32:
return std::make_unique<ScalarIndexingEntry<int32_t>>(field_meta);
case DataType::INT64:
return std::make_unique<ScalarIndexingEntry<int64_t>>(field_meta);
case DataType::FLOAT:
return std::make_unique<ScalarIndexingEntry<float>>(field_meta);
case DataType::DOUBLE:
return std::make_unique<ScalarIndexingEntry<double>>(field_meta);
default:
PanicInfo("unsupported");
}
}
} // namespace milvus::segcore

View File

@ -5,6 +5,7 @@
#include <optional>
#include "InsertRecord.h"
#include <knowhere/index/vector_index/IndexIVF.h>
#include <knowhere/index/structured_index_simple/StructuredIndexSort.h>
namespace milvus::segcore {
@ -14,35 +15,68 @@ class IndexingEntry {
public:
explicit IndexingEntry(const FieldMeta& field_meta) : field_meta_(field_meta) {
}
// concurrent
knowhere::VecIndex*
get_indexing(int64_t chunk_id) const {
return data_.at(chunk_id).get();
}
IndexingEntry(const IndexingEntry&) = delete;
IndexingEntry&
operator=(const IndexingEntry&) = delete;
// Do this in parallel
void
BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base);
virtual void
BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base) = 0;
const FieldMeta&
get_field_meta() {
return field_meta_;
}
protected:
// additional info
const FieldMeta& field_meta_;
};
template <typename T>
class ScalarIndexingEntry : public IndexingEntry {
public:
using IndexingEntry::IndexingEntry;
void
BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base) override;
// concurrent
knowhere::scalar::StructuredIndex<T>*
get_indexing(int64_t chunk_id) const {
Assert(!field_meta_.is_vector());
return data_.at(chunk_id).get();
}
private:
tbb::concurrent_vector<std::unique_ptr<knowhere::scalar::StructuredIndex<T>>> data_;
};
class VecIndexingEntry : public IndexingEntry {
public:
using IndexingEntry::IndexingEntry;
void
BuildIndexRange(int64_t ack_beg, int64_t ack_end, const VectorBase* vec_base) override;
// concurrent
knowhere::VecIndex*
get_vec_indexing(int64_t chunk_id) const {
Assert(field_meta_.is_vector());
return data_.at(chunk_id).get();
}
knowhere::Config
get_build_conf() const;
knowhere::Config
get_search_conf(int top_k) const;
private:
// additional info
const FieldMeta& field_meta_;
private:
tbb::concurrent_vector<std::unique_ptr<knowhere::VecIndex>> data_;
};
std::unique_ptr<IndexingEntry>
CreateIndex(const FieldMeta& field_meta);
class IndexingRecord {
public:
explicit IndexingRecord(const Schema& schema) : schema_(schema) {
@ -53,9 +87,7 @@ class IndexingRecord {
Initialize() {
int offset = 0;
for (auto& field : schema_) {
if (field.is_vector()) {
entries_.try_emplace(offset, field);
}
entries_.try_emplace(offset, CreateIndex(field));
++offset;
}
assert(offset == schema_.size());
@ -72,9 +104,25 @@ class IndexingRecord {
}
const IndexingEntry&
get_indexing(int i) const {
assert(entries_.count(i));
return entries_.at(i);
get_entry(int field_offset) const {
assert(entries_.count(field_offset));
return *entries_.at(field_offset);
}
const VecIndexingEntry&
get_vec_entry(int field_offset) const {
auto& entry = get_entry(field_offset);
auto ptr = dynamic_cast<const VecIndexingEntry*>(&entry);
AssertInfo(ptr, "invalid indexing");
return *ptr;
}
template <typename T>
auto
get_scalar_entry(int field_offset) const -> const ScalarIndexingEntry<T>& {
auto& entry = get_entry(field_offset);
auto ptr = dynamic_cast<const ScalarIndexingEntry<T>*>(&entry);
AssertInfo(ptr, "invalid indexing");
return *ptr;
}
private:
@ -89,7 +137,7 @@ class IndexingRecord {
private:
// field_offset => indexing
std::map<int, IndexingEntry> entries_;
std::map<int, std::unique_ptr<IndexingEntry>> entries_;
};
} // namespace milvus::segcore

View File

@ -7,9 +7,39 @@ InsertRecord::InsertRecord(const Schema& schema) : uids_(1), timestamps_(1) {
if (field.is_vector()) {
Assert(field.get_data_type() == DataType::VECTOR_FLOAT);
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<float>>(field.get_dim()));
} else {
Assert(field.get_data_type() == DataType::INT32);
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<int32_t, true>>());
continue;
}
switch (field.get_data_type()) {
case DataType::INT8: {
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<int8_t, true>>());
break;
}
case DataType::INT16: {
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<int16_t, true>>());
break;
}
case DataType::INT32: {
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<int32_t, true>>());
break;
}
case DataType::INT64: {
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<int64_t, true>>());
break;
}
case DataType::FLOAT: {
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<float, true>>());
break;
}
case DataType::DOUBLE: {
entity_vec_.emplace_back(std::make_shared<ConcurrentVector<double, true>>());
break;
}
default: {
PanicInfo("unsupported");
}
}
}
}

View File

@ -168,7 +168,7 @@ SegmentSmallIndex::Insert(int64_t reserved_begin,
}
record_.ack_responder_.AddSegment(reserved_begin, reserved_begin + size);
// indexing_record_.UpdateResourceAck(record_.ack_responder_.GetAck() / DefaultElementPerChunk);
indexing_record_.UpdateResourceAck(record_.ack_responder_.GetAck() / DefaultElementPerChunk, record_);
return Status::OK();
}
@ -280,7 +280,7 @@ SegmentSmallIndex::BuildIndex(IndexMetaPtr remote_index_meta) {
if (record_.ack_responder_.GetAck() < 1024 * 4) {
return Status(SERVER_BUILD_INDEX_ERROR, "too few elements");
}
// AssertInfo(false, "unimplemented");
AssertInfo(false, "unimplemented");
return Status::OK();
#if 0
index_meta_ = remote_index_meta;

View File

@ -10,7 +10,7 @@ set(MILVUS_TEST_FILES
test_indexing.cpp
test_query.cpp
test_expr.cpp
)
test_bitmap.cpp)
add_executable(all_tests
${MILVUS_TEST_FILES}
)

View File

@ -0,0 +1,26 @@
#include <gtest/gtest.h>
#include "test_utils/DataGen.h"
#include "knowhere/index/structured_index_simple/StructuredIndexSort.h"
TEST(Bitmap, Naive) {
using namespace milvus;
using namespace milvus::segcore;
using namespace milvus::query;
auto schema = std::make_shared<Schema>();
schema->AddField("height", DataType::FLOAT);
int N = 10000;
auto raw_data = DataGen(schema, N);
auto vec = raw_data.get_col<float>(0);
auto sort_index = std::make_shared<knowhere::scalar::StructuredIndexSort<float>>();
sort_index->Build(N, vec.data());
{
auto res = sort_index->Range(0, knowhere::scalar::OperatorType::LT);
double count = res->count();
ASSERT_NEAR(count / N, 0.5, 0.01);
}
{
auto res = sort_index->Range(-1, false, 1, true);
double count = res->count();
ASSERT_NEAR(count / N, 0.682, 0.01);
}
}

View File

@ -192,7 +192,7 @@ TEST(CApiTest, BuildIndexTest) {
// TODO: add index ptr
Close(segment);
BuildIndex(collection, segment);
// BuildIndex(collection, segment);
const char* dsl_string = R"(
{

View File

@ -76,15 +76,13 @@ TEST(Indexing, SmartBruteForce) {
auto query_data = raw;
vector<int64_t> final_uids(total_count);
vector<int64_t> final_uids(total_count, -1);
vector<float> final_dis(total_count, std::numeric_limits<float>::max());
for (int beg = 0; beg < N; beg += DefaultElementPerChunk) {
vector<int64_t> buf_uids(total_count, -1);
vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
faiss::float_maxheap_array_t buf = {queries, TOPK, buf_uids.data(), buf_dis.data()};
auto end = beg + DefaultElementPerChunk;
if (end > N) {
end = N;
@ -93,12 +91,10 @@ TEST(Indexing, SmartBruteForce) {
auto src_data = raw + beg * DIM;
faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr);
if (beg == 0) {
final_uids = buf_uids;
final_dis = buf_dis;
} else {
merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
for (auto& x : buf_uids) {
x = uids[x + beg];
}
merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
}
for (int qn = 0; qn < queries; ++qn) {

View File

@ -8,6 +8,7 @@
#include "query/generated/ShowPlanNodeVisitor.h"
#include "query/generated/ExecPlanNodeVisitor.h"
#include "query/PlanImpl.h"
#include "segcore/SegmentSmallIndex.h"
using namespace milvus;
using namespace milvus::query;
@ -148,29 +149,165 @@ TEST(Query, ParsePlaceholderGroup) {
auto schema = std::make_shared<Schema>();
schema->AddField("fakevec", DataType::VECTOR_FLOAT, 16);
auto plan = CreatePlan(*schema, dsl_string);
int num_queries = 10;
int64_t num_queries = 100000;
int dim = 16;
std::default_random_engine e;
std::normal_distribution<double> dis(0, 1);
ser::PlaceholderGroup raw_group;
auto value = raw_group.add_placeholders();
value->set_tag("$0");
value->set_type(ser::PlaceholderType::VECTOR_FLOAT);
for (int i = 0; i < num_queries; ++i) {
std::vector<float> vec;
for (int d = 0; d < dim; ++d) {
vec.push_back(dis(e));
}
// std::string line((char*)vec.data(), (char*)vec.data() + vec.size() * sizeof(float));
value->add_values(vec.data(), vec.size() * sizeof(float));
}
auto raw_group = CreatePlaceholderGroup(num_queries, dim);
auto blob = raw_group.SerializeAsString();
// ser::PlaceholderGroup new_group;
// new_group.ParseFromString()
auto placeholder = ParsePlaceholderGroup(plan.get(), blob);
}
TEST(Query, Exec) {
TEST(Query, ExecWithPredicate) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = std::make_shared<Schema>();
schema->AddField("fakevec", DataType::VECTOR_FLOAT, 16);
schema->AddField("age", DataType::FLOAT);
std::string dsl = R"({
"bool": {
"must": [
{
"range": {
"age": {
"GE": -1,
"LT": 1
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5
}
}
}
]
}
})";
int64_t N = 1000 * 1000;
auto dataset = DataGen(schema, N);
auto segment = std::make_unique<SegmentSmallIndex>(schema);
segment->PreInsert(N);
segment->Insert(0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_);
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
QueryResult qr;
Timestamp time = 1000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
segment->Search(plan.get(), ph_group_arr.data(), &time, 1, qr);
std::vector<std::vector<std::string>> results;
int topk = 5;
for (int q = 0; q < num_queries; ++q) {
std::vector<std::string> result;
for (int k = 0; k < topk; ++k) {
int index = q * topk + k;
result.emplace_back(std::to_string(qr.result_ids_[index]) + "->" +
std::to_string(qr.result_distances_[index]));
}
results.emplace_back(std::move(result));
}
auto ref = Json::parse(R"([
[
[
"980486->3.149221",
"318367->3.661235",
"302798->4.553688",
"321424->4.757450",
"565529->5.083780"
],
[
"233390->7.931535",
"238958->8.109344",
"230645->8.439169",
"901939->8.658772",
"380328->8.731251"
],
[
"897246->3.749835",
"750683->3.897577",
"857598->4.230977",
"299009->4.379639",
"440010->4.454046"
],
[
"840855->4.782170",
"709627->5.063170",
"72322->5.166143",
"107142->5.180207",
"948403->5.247065"
],
[
"810401->3.926393",
"46575->4.054171",
"201740->4.274491",
"669040->4.399628",
"231500->4.831223"
]
]
])");
Json json{results};
ASSERT_EQ(json, ref);
}
TEST(Query, ExecWihtoutPredicate) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = std::make_shared<Schema>();
schema->AddField("fakevec", DataType::VECTOR_FLOAT, 16);
schema->AddField("age", DataType::FLOAT);
std::string dsl = R"({
"bool": {
"must": [
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5
}
}
}
]
}
})";
int64_t N = 1000 * 1000;
auto dataset = DataGen(schema, N);
auto segment = std::make_unique<SegmentSmallIndex>(schema);
segment->PreInsert(N);
segment->Insert(0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_);
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
QueryResult qr;
Timestamp time = 1000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
segment->Search(plan.get(), ph_group_arr.data(), &time, 1, qr);
std::vector<std::vector<std::string>> results;
int topk = 5;
for (int q = 0; q < num_queries; ++q) {
std::vector<std::string> result;
for (int k = 0; k < topk; ++k) {
int index = q * topk + k;
result.emplace_back(std::to_string(qr.result_ids_[index]) + "->" +
std::to_string(qr.result_distances_[index]));
}
results.emplace_back(std::move(result));
}
Json json{results};
std::cout << json.dump(2);
}

View File

@ -111,4 +111,24 @@ DataGen(SchemaPtr schema, int64_t N, uint64_t seed = 42) {
return std::move(res);
}
} // namespace milvus::segcore
inline auto
CreatePlaceholderGroup(int64_t num_queries, int dim, int64_t seed = 42) {
namespace ser = milvus::proto::service;
ser::PlaceholderGroup raw_group;
auto value = raw_group.add_placeholders();
value->set_tag("$0");
value->set_type(ser::PlaceholderType::VECTOR_FLOAT);
std::normal_distribution<double> dis(0, 1);
std::default_random_engine e(seed);
for (int i = 0; i < num_queries; ++i) {
std::vector<float> vec;
for (int d = 0; d < dim; ++d) {
vec.push_back(dis(e));
}
// std::string line((char*)vec.data(), (char*)vec.data() + vec.size() * sizeof(float));
value->add_values(vec.data(), vec.size() * sizeof(float));
}
return raw_group;
}
} // namespace milvus::segcore